Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment

被引:0
|
作者
Patrick Schelb
Xianfeng Wang
Jan Philipp Radtke
Manuel Wiesenfarth
Philipp Kickingereder
Albrecht Stenzinger
Markus Hohenfellner
Heinz-Peter Schlemmer
Klaus H. Maier-Hein
David Bonekamp
机构
[1] German Cancer Research Center (DKFZ),Division of Radiology
[2] Affiliated Hospital of Guilin Medical University,Department of Radiology
[3] University of Heidelberg Medical Center,Department of Urology
[4] German Cancer Research Center (DKFZ),Division of Biostatistics
[5] University of Heidelberg Medical Center,Department of Neuroradiology
[6] University of Heidelberg Medical Center,Institute of Pathology
[7] German Cancer Consortium (DKTK),Medical Image Computing
[8] German Cancer Research Center (DKFZ),undefined
来源
European Radiology | 2021年 / 31卷
关键词
Prostate cancer; Magnetic resonance imaging; Artificial intelligence; Deep learning; Decision support systems, clinical;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:302 / 313
页数:11
相关论文
共 50 条
  • [41] Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI
    Johnson, Patricia M.
    Lin, Dana J.
    Zbontar, Jure
    Zitnick, C. Lawrence
    Sriram, Anuroop
    Muckley, Matthew
    Babb, James S.
    Kline, Mitchell
    Ciavarra, Gina
    Alaia, Erin
    Samim, Mohammad
    Walter, William R.
    Calderon, Liz
    Pock, Thomas
    Sodickson, Daniel K.
    Recht, Michael P.
    Knoll, Florian
    RADIOLOGY, 2023, 307 (02)
  • [42] Deep learning image reconstruction: a tremendous advance for clinical MRI but be careful…
    Taylor Chung
    Jonathan R. Dillman
    Pediatric Radiology, 2023, 53 : 2157 - 2158
  • [43] Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm
    Boettcher, Benjamin
    Beller, Ebba
    Busse, Anke
    Cantre, Daniel
    Yuecel, Seyrani
    Oener, Alper
    Ince, Hueseyin
    Weber, Marc-Andre
    Meinel, Felix G.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 36 (11): : 2239 - 2247
  • [44] Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm
    Benjamin Böttcher
    Ebba Beller
    Anke Busse
    Daniel Cantré
    Seyrani Yücel
    Alper Öner
    Hüseyin Ince
    Marc-André Weber
    Felix G. Meinel
    The International Journal of Cardiovascular Imaging, 2020, 36 : 2239 - 2247
  • [45] Harnessing clinical annotations to improve deep learning performance in prostate segmentation
    Sarma, Karthik, V
    Raman, Alex G.
    Dhinagar, Nikhil J.
    Priester, Alan M.
    Harmon, Stephanie
    Sanford, Thomas
    Mehralivand, Sherif
    Turkbey, Baris
    Marks, Leonard S.
    Raman, Steven S.
    Speier, William
    Arnold, Corey W.
    PLOS ONE, 2021, 16 (06):
  • [46] Clinical evaluation of deep learning autocontouring in prostate and head and neck cancer
    Hague, C.
    Beasley, W.
    McPartlin, A.
    Owens, S.
    Price, G.
    Saud, H.
    Slevin, N.
    Van Herk, M.
    Whitehurst, P.
    Chuter, R.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S950 - S950
  • [47] Performance Deterioration of Deep Learning Models after Clinical Deployment: A Case Study with Auto-segmentation for Definitive Prostate Cancer Radiotherapy
    Wang, Biling
    Dohopolski, Michael
    Bai, Ti
    Wu, Junjie
    Hannan, Raquibul
    Desai, Neil
    Garant, Aurelie
    Yang, Daniel
    Nguyen, Dan
    Lin, Mu-Han
    Timmerman, Robert
    Wang, Xinlei
    Jiang, Steve
    arXiv, 2022,
  • [48] Performance deterioration of deep learning models after clinical deployment: a case study with auto-segmentation for definitive prostate cancer radiotherapy
    Wang, Biling
    Dohopolski, Michael
    Bai, Ti
    Wu, Junjie
    Hannan, Raquibul
    Desai, Neil
    Garant, Aurelie
    Yang, Daniel
    Nguyen, Dan
    Lin, Mu-Han
    Timmerman, Robert
    Wang, Xinlei
    Jiang, Steve B.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [49] Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models
    Nam, Yoonho
    Park, Ga Eun
    Kang, Junghwa
    Kim, Sung Hun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) : 818 - 826
  • [50] DEEP LEARNING FOR ACCURATE, RAPID, FULLY AUTOMATIC MEASUREMENT OF BRAIN TUMOR-ASSOCIATED ABNORMALITY SEEN ON MRI
    Mitchell, Joseph
    Kamnitsas, Konstantinos
    Singleton, Kyle
    Whitmire, Scott
    Clark-Swanson, Kamala
    Rickertsen, Cassandra
    Glocker, Ben
    Hu, Leland
    Swanson, Kristin
    NEURO-ONCOLOGY, 2018, 20 : 180 - 181