Axiomatising timed automata

被引:0
|
作者
Huimin Lin
Wang Yi
机构
[1] Laboratory for Computer Science,
[2] Institute of Software,undefined
[3] Chinese Academy of Sciences,undefined
[4] Beijing,undefined
[5] People's Republic of China (e-mail: lhm@ios.ac.cn),undefined
[6] Department of Computer Systems,undefined
[7] Uppsala University,undefined
[8] Sweden (e-mail: yi@csd.uu.se),undefined
来源
Acta Informatica | 2002年 / 38卷
关键词
Inference System; Real Time System; Automate Analysis; Inference Rule; Time System;
D O I
暂无
中图分类号
学科分类号
摘要
Timed automata has been developed as a basic semantic model for real time systems. Its algorithmic aspects for automated analysis have been well studied. But so far there is still no satisfactory algebraic theory to allow the derivation of semantical equivalence of automata by purely syntactical manipulation. The aim of this paper is to provide such a theory. We present an inference system of timed bisimulation equivalence for timed automata based on a CCS-style regular language for describing timed automata. It consists of the standard monoid laws for bisimulation and a set of inference rules. The judgments of the proof system are conditional equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\phi \rhd t = u$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\phi$\end{document} is a clock constraint and t,u are terms denoting timed automata. The inference system is shown to be sound and complete for timed bisimulation. The proof of the completeness result relies on the notion of symbolic timed bisimulation, adapted from the work on value–passing processes.
引用
收藏
页码:277 / 305
页数:28
相关论文
共 50 条
  • [11] THE THEORY OF TIMED AUTOMATA
    ALUR, R
    DILL, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 600 : 45 - 73
  • [12] Untameable timed automata!
    Bouyer, P
    STACS 2003, PROCEEDINGS, 2003, 2607 : 620 - 631
  • [13] Shrinking timed automata
    Sankur, Ocan
    Bouyer, Patricia
    Markey, Nicolas
    INFORMATION AND COMPUTATION, 2014, 234 : 107 - 132
  • [14] Robustness in Timed Automata
    Bouyer, Patricia
    Markey, Nicolas
    Sankur, Ocan
    REACHABILITY PROBLEMS, 2013, 8169 : 1 - 18
  • [15] Minimizable timed automata
    Springintveld, J.
    Vaandrager, F.
    Lecture Notes in Computer Science, 1135
  • [16] Concuffency in timed automata
    Lanotte, R
    Maggiolo-Schettini, A
    Tini, S
    THEORETICAL COMPUTER SCIENCE, 2003, 309 (1-3) : 503 - 527
  • [17] Eventual timed automata
    D'Souza, D
    Mohan, MR
    FSTTCS 2005: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2005, 3821 : 322 - 334
  • [18] Timed P Automata
    Barbuti, Roberto
    Maggiolo-Schettini, Andrea
    Milazzo, Paolo
    Tesei, Luca
    FUNDAMENTA INFORMATICAE, 2009, 94 (01) : 1 - 19
  • [19] Testing timed automata
    Springintveld, J
    Vaandrager, F
    D'Argenio, PR
    THEORETICAL COMPUTER SCIENCE, 2001, 254 (1-2) : 225 - 257
  • [20] The Timestamp of Timed Automata
    Rosenmann, Amnon
    FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS (FORMATS 2019), 2019, 11750 : 181 - 198