On the Leibniz Homology of Poisson Algebras

被引:0
|
作者
Georges Papadopoulo
机构
[1] University of Basel,Department of Mathematics
来源
关键词
Leibniz algebras; homology;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Leibniz homology of the Poisson algebra of polynomial functions over (ℝ2n,ω) where ω is the standard symplectic structure. We identify it with certain highest-weight vectors of some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{s}\mathfrak{p}$$ \end{document}2n(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{C}$$ \end{document})-modules and obtain some explicit result in low degree.
引用
收藏
页码:237 / 247
页数:10
相关论文
共 50 条
  • [41] Necessary and Sufficient Conditions of Polynomial Growth of Varieties of Leibniz-Poisson Algebras
    Ratseev, S. M.
    RUSSIAN MATHEMATICS, 2014, 58 (03) : 26 - 30
  • [42] On Leibniz algebras
    Ayupov, SA
    Omirov, BA
    ALGEBRA AND OPERATOR THEORY, 1998, : 1 - 12
  • [43] Leibniz and Hochschild homology
    Altawallbeh, Zuhier
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 62 - 68
  • [44] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [45] On Varieties of Leibniz-Poisson Algebras with the Identity {x, y} . {z, t} = 0
    Ratseev, Sergey M.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2013, 6 (01): : 97 - 104
  • [46] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [47] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [48] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [49] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [50] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138