Prediction and real-time compensation of qubit decoherence via machine learning

被引:0
|
作者
Sandeep Mavadia
Virginia Frey
Jarrah Sastrawan
Stephen Dona
Michael J. Biercuk
机构
[1] ARC Centre for Engineered Quantum Systems,
[2] School of Physics,undefined
[3] The University of Sydney,undefined
[4] National Measurement Institute,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The wide-ranging adoption of quantum technologies requires practical, high-performance advances in our ability to maintain quantum coherence while facing the challenge of state collapse under measurement. Here we use techniques from control theory and machine learning to predict the future evolution of a qubit’s state; we deploy this information to suppress stochastic, semiclassical decoherence, even when access to measurements is limited. First, we implement a time-division multiplexed approach, interleaving measurement periods with periods of unsupervised but stabilised operation during which qubits are available, for example, in quantum information experiments. Second, we employ predictive feedback during sequential but time delayed measurements to reduce the Dick effect as encountered in passive frequency standards. Both experiments demonstrate significant improvements in qubit-phase stability over ‘traditional’ measurement-based feedback approaches by exploiting time domain correlations in the noise processes. This technique requires no additional hardware and is applicable to all two-level quantum systems where projective measurements are possible.
引用
收藏
相关论文
共 50 条
  • [41] REAL-TIME PREDICTION OF INTRADIALYTIC HYPOTENSION USING MACHINE LEARNING AND CLOUD COMPUTING INFRASTRUCTURE
    Zhang, Hanjie
    Chaudhuri, Sheetal
    Pickering, Aaron
    Usvyat, Len A.
    Larkin, John
    Waguespack, Peter
    Kuang, Zuwen
    Kooman, Jeroen
    Maddux, Frank
    Kotanko, Peter
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2022, 37 : I549 - I549
  • [42] Machine Learning-Based Real-Time Survival Prediction for Gastric Neuroendocrine Carcinoma
    Ding, Fangchao
    Zhuang, Yizhen
    Chen, Shengxiang
    ANNALS OF SURGICAL ONCOLOGY, 2025, : 3372 - 3381
  • [43] A Machine Learning Method for Prediction of Stock Market Using Real-Time Twitter Data
    Albahli, Saleh
    Irtaza, Aun
    Nazir, Tahira
    Mehmood, Awais
    Alkhalifah, Ali
    Albattah, Waleed
    ELECTRONICS, 2022, 11 (20)
  • [44] Real-Time Prediction of Petrophysical Properties Using Machine Learning Based on Drilling Parameters
    Hassaan, Said
    Mohamed, Abdulaziz
    Ibrahim, Ahmed Farid
    Elkatatny, Salaheldin
    ACS OMEGA, 2024,
  • [45] Real-time prediction of interstitial oxygen concentration in Czochralski silicon using machine learning
    Kutsukake, Kentaro
    Nagai, Yuta
    Horikawa, Tomoyuki
    Banba, Hironori
    APPLIED PHYSICS EXPRESS, 2020, 13 (12)
  • [46] Real-time traffic congestion prediction using big data and machine learning techniques
    Chawla, Priyanka
    Hasurkar, Rutuja
    Bogadi, Chaithanya Reddy
    Korlapati, Naga Sindhu
    Rajendran, Rajasree
    Ravichandran, Sindu
    Tolem, Sai Chaitanya
    Gao, Jerry Zeyu
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 140 - 155
  • [47] Real-time optimal protocol prediction of quantum key distribution using machine learning
    Arthi, R.
    Nayana, J. S.
    Mondal, Rajarshee
    INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2023, 19 (05) : 689 - 697
  • [48] A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control
    Henri, Gonzague
    Lu, Ning
    Carrejo, Carlos
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [49] Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure
    Zhang, Hanjie
    Wang, Lin-Chun
    Chaudhuri, Sheetal
    Pickering, Aaron
    Usvyat, Len
    Larkin, John
    Waguespack, Pete
    Kuang, Zuwen
    Kooman, Jeroen P.
    Maddux, Franklin W.
    Kotanko, Peter
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 (07) : 1761 - 1769
  • [50] Evaluation of machine learning techniques for real-time prediction of implanted lower limb mechanics
    Maag, Chase
    Fitzpatrick, Clare K.
    Rullkoetter, Paul J.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 12