Direct measurement of thermal conductivity in solid iron at planetary core conditions

被引:0
|
作者
Zuzana Konôpková
R. Stewart McWilliams
Natalia Gómez-Pérez
Alexander F. Goncharov
机构
[1] DESY Photon Science,Departamento de Geociencias
[2] School of Physics and Astronomy and Centre for Science at Extreme Conditions,undefined
[3] University of Edinburgh,undefined
[4] Universidad de Los Andes,undefined
[5] Key Laboratory of Materials Physics,undefined
[6] Institute of Solid State Physics,undefined
[7] Chinese Academy of Sciences,undefined
[8] Geophysical Laboratory,undefined
[9] Carnegie Institution of Washington,undefined
[10] †Present address: European XFEL GmbH,undefined
[11] Notkestrasse 85,undefined
[12] DE-22607 Hamburg,undefined
[13] Germany.,undefined
来源
Nature | 2016年 / 534卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The thermal conductivity of solid iron at the pressure and temperature conditions that prevail in the cores of planets is measured directly using a dynamically laser-heated diamond-anvil cell, yielding values that support findings from ancient magnetized rocks that suggest Earth’s magnetic field has persisted since the Earth’s earliest history.
引用
收藏
页码:99 / 101
页数:2
相关论文
共 50 条
  • [21] Technical Devices for the Direct Measurement of the Thermal Conductivity of Solids
    Bochegov, V. I.
    Grabov, V. M.
    Parakhin, A. S.
    MEASUREMENT TECHNIQUES, 2014, 57 (04) : 401 - 408
  • [22] Direct laser-driven ramp compression studies of iron: A first step toward the reproduction of planetary core conditions
    Amadou, N.
    Brambrink, E.
    Benuzzi-Mounaix, A.
    Huser, G.
    Guyot, F.
    Mazevet, S.
    Morard, G.
    de Resseguier, T.
    Vinci, T.
    Myanishi, K.
    Ozaki, N.
    Kodama, R.
    Boehly, T.
    Henry, O.
    Raffestin, D.
    Koenig, M.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) : 243 - 246
  • [23] Thermal conductivity of halide solid solutions: Measurement and prediction
    Gheribi, AImen E.
    Poncsak, Sandor
    St-Pierre, Remi
    Kiss, Laszlo I.
    Chartrand, Patrice
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (10):
  • [24] Solid layer thermal-conductivity measurement techniques
    Goodson, K.E.
    Flik, M.I.
    Applied Mechanics Reviews, 1994, 47 (03) : 101 - 112
  • [25] The measurement of thermal conductivity variation with temperature for solid materials
    Aksoz, S.
    Ozturk, E.
    Marasli, N.
    MEASUREMENT, 2013, 46 (01) : 161 - 170
  • [26] The high conductivity of iron and thermal evolution of the Earth's core
    Gomi, Hitoshi
    Ohta, Kenji
    Hirose, Kei
    Labrosse, Stephane
    Caracas, Razvan
    Verstraete, Matthieu J.
    Hernlund, John W.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2013, 224 : 88 - 103
  • [27] MEASUREMENT OF THE THERMAL-CONDUCTIVITY OF SOLID SUBSTANCES BY DSC
    HAKVOORT, G
    VANREIJEN, LL
    AARTSEN, AJ
    THERMOCHIMICA ACTA, 1985, 93 (SEP) : 317 - 320
  • [28] Effect of Iron Content on Thermal Conductivity of Ferropericlase: Implications for Planetary Mantle Dynamics
    Zhang, Youyue
    Yoshino, Takashi
    Osako, Masahiro
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (07)
  • [29] MEASUREMENT OF SOLID ELECTROLYTE CONDUCTIVITY USING DIRECT CURRENT METHOD
    Joneliunas, Sigitas
    RADIATION INTERACTION WITH MATERIAL AND ITS USE IN TECHNOLOGIES 2012, 2012, : 135 - 136
  • [30] THERMAL DIFFUSIVITY AND CONDUCTIVITY OF SOLID SOLUTIONS OF SILICON IN IRON AND COBALT
    KRENTSIS, RP
    ZINOVYEV, VY
    ANDREYEV.LP
    GELD, PV
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1970, 29 (01): : 122 - &