Silica sources for arsenic mitigation in rice: machine learning-based predictive modeling and risk assessment

被引:0
|
作者
Rubina Khanam
Amaresh Kumar Nayak
Pedda Ghouse Peera Sheikh Kulsum
Jajati Mandal
Mohammad Shahid
Rahul Tripathy
Pratap Bhattacharyya
Panneer Selvam
Sushmita Munda
Sivashankari Manickam
Manish Debnath
Raghavendra Goud Bandaru
机构
[1] National Rice Research Institute,ICAR
[2] C V Raman Global University,Crop Production Division
[3] University of Salford,School of Science, Engineering and Environment
关键词
Arsenic; Rice; Silicon; Machine learning; Random forest model; Human exposure;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:113660 / 113673
页数:13
相关论文
共 50 条
  • [21] Development of a novel machine learning-based predictive risk calculator for radical cystectomy
    Rajagopalan, Aravind
    Chua, Kevin J.
    Patel, Hiren V.
    Pfail, John
    Kaldany, Alain
    Fu, Melinda
    Elsamra, Sammy
    Jang, Thomas L.
    Pitt, Henry
    Ghodoussipour, Saum
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (4_SUPPL) : 578 - 578
  • [22] An Assessment of the Predictive Performance of Current Machine Learning-Based Breast Cancer Risk Prediction Models: Systematic Review
    Gao, Ying
    Li, Shu
    Jin, Yujing
    Zhou, Lengxiao
    Sun, Shaomei
    Xu, Xiaoqian
    Li, Shuqian
    Yang, Hongxi
    Zhang, Qing
    Wang, Yaogang
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2022, 8 (12):
  • [23] Machine Learning-Based Predictive Inventory for a Vending Machine Warehouse
    Mehmood, Umair
    Broderick, John
    Davies, Simon
    Bashir, Ali Kashif
    Rabie, Khaled
    IEEE Internet of Things Magazine, 2024, 7 (06): : 94 - 100
  • [24] Machine Learning-Based Fast Seismic Risk Assessment of Building Structures
    Tang, Qi
    Dang, Ji
    Cui, Yao
    Wang, Xin
    Jia, Jinqing
    JOURNAL OF EARTHQUAKE ENGINEERING, 2022, 26 (15) : 8041 - 8062
  • [25] Machine Learning-Based Fault Injection for Hazard Analysis and Risk Assessment
    Oakes, Bentley James
    Moradi, Mehrdad
    Van Mierlo, Simon
    Vangheluwe, Hans
    Denil, Joachim
    COMPUTER SAFETY, RELIABILITY, AND SECURITY (SAFECOMP 2021), 2021, 12852 : 178 - 192
  • [26] Interpretable machine learning-based predictive modeling of patient outcomes following cardiac surgery
    Abbasi, Adeel
    Li, Cindy
    Dekle, Max
    Bermudez, Christian A.
    Brodie, Daniel
    Sellke, Frank W.
    Sodha, Neel R.
    Ventetuolo, Corey E.
    Eickhoff, Carsten
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2025, 169 (01):
  • [27] Machine learning-based reduced-order modeling and predictive control of nonlinear processes
    Zhao, Tianyi
    Zheng, Yingzhe
    Gong, Jinlong
    Wu, Zhe
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 179 : 435 - 451
  • [28] Machine Learning Based Predictive Model for Risk Assessment of Employee Attrition
    Gabrani, Goldie
    Kwatra, Anshul
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT IV, 2018, 10963 : 189 - 201
  • [29] Prediction of arsenic concentration in groundwater of Chapainawabganj, Bangladesh: machine learning-based approach to spatial modeling
    Khatun M.F.
    Reza A.H.M.S.
    Sattar G.S.
    Khan A.S.
    Khan M.I.A.
    Environmental Science and Pollution Research, 2024, 31 (33) : 46023 - 46037
  • [30] MACHINE LEARNING-BASED PREDICTIVE MODELLING OF LAMINATED COMPOSITES
    Kalita, Kanak
    Chakraborty, Shankar
    Gautam, Preeti
    Petru, Jana
    Samal, S. P.
    MM SCIENCE JOURNAL, 2025, 2025 : 8169 - 8175