Focused electron beam-induced deposition at cryogenic temperatures

被引:0
|
作者
M. Bresin
B. L. Thiel
M. Toth
K. A. Dunn
机构
[1] University at Albany,College of Nanoscale Science and Engineering
[2] FEI Company,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Direct-write, cryogenic electron beam-induced deposition (EBID) was performed by condensing methylcyclopentadienyl-platinum-trimethyl precursor onto a substrate at -155°C, exposing the condensate by a 15 keV electron beam, and desorbing unexposed precursor molecules by heating the substrate to room temperature. Dependencies of film thickness, microstructure, and surface morphology on electron beam flux and fluence, and Monte Carlo simulations of electron interactions with the condensate are used to construct a model of cryogenic EBID that is contrasted to existing models of conventional, room temperature EBID. It is shown that material grown from a cryogenic condensate exhibits one of three distinct surface morphologies: a nanoporous mesh with a high surface-to-volume ratio; a smooth, continuous film analogous to material typically grown by room temperature EBID; or a film with a high degree of surface roughness, analogous to that of the cryogenic condensate. The surface morphology can be controlled reproducibly by the electron fluence used for exposure.
引用
收藏
页码:357 / 364
页数:7
相关论文
共 50 条
  • [31] Focused electron beam induced deposition: A perspective
    Huth, Michael
    Porrati, Fabrizio
    Schwalb, Christian
    Winhold, Marcel
    Sachser, Roland
    Dukic, Maja
    Adams, Jonathan
    Fantner, Georg
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 : 597 - 619
  • [32] Focused particle beam-induced processing
    Huth, Michael
    Goelzhaeuser, Armin
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 1883 - 1885
  • [33] Formation of masking pattern by electron beam-induced vapor deposition
    Bruk, M. A.
    Zhikharev, E. N.
    Shevchuk, S. L.
    Volegova, I. A.
    Spirin, A. V.
    Teleshov, E. N.
    Kal'nov, V. A.
    Maishev, Yu. P.
    HIGH ENERGY CHEMISTRY, 2008, 42 (02) : 105 - 112
  • [34] Fabrication of iron oxide nanostructures by electron beam-induced deposition
    Shimojo, M.
    Takeguchi, M.
    Mitsuishi, K.
    Tanaka, M.
    Furuya, K.
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 1101 - 1104
  • [35] Resolution limit for electron beam-induced deposition on thick substrates
    Hagen, C. W.
    Silvis-Cividjian, N.
    Kruit, P.
    SCANNING, 2006, 28 (04) : 204 - 211
  • [36] Effect of electron beam-induced deposition and etching under bias
    Choi, Young R.
    Rack, Philip D.
    Frost, Bernhard
    Joy, David C.
    SCANNING, 2007, 29 (04) : 171 - 176
  • [37] Formation of masking pattern by electron beam-induced vapor deposition
    M. A. Bruk
    E. N. Zhikharev
    S. L. Shevchuk
    I. A. Volegova
    A. V. Spirin
    E. N. Teleshov
    V. A. Kal’nov
    Yu. P. Maishev
    High Energy Chemistry, 2008, 42 : 105 - 112
  • [38] Improvement of MEMS Thermomechanical Actuation Efficiency by Focused Ion Beam-Induced Deposition
    Pruchnik, Bartosz
    Piasecki, Tomasz
    Gacka, Ewelina
    Masteghin, Mateus G.
    Cox, David C.
    Gotszalk, Teodor
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2024, 33 (03) : 362 - 368
  • [39] Atomistic modeling of thermal effects in focused electron beam-induced deposition of Me2Au(tfac)
    Prosvetov, Alexey
    Verkhovtsev, Alexey V.
    Sushko, Gennady
    Solov'yov, Andrey V.
    EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (01):
  • [40] Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review
    Utke, Ivo
    Michler, Johann
    Winkler, Robert
    Plank, Harald
    MICROMACHINES, 2020, 11 (04)