Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes

被引:0
|
作者
Jie Ming Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics and Statistics
关键词
Heat kernel; transition density function; gradient estimate; finite range jump process; truncated fractional Laplacian; martingale problem; 60J35; 47G20; 60J75; 47D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the sharp two-sided heat kernel estimates and the gradient estimate for the truncated fractional Laplacian under gradient perturbation Sb=Δ¯α/2+b⋅∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal S}^b}: = {\overline {\rm{\Delta }} ^{\alpha /2}} + b \cdot \nabla $$\end{document} where Δ¯α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline {\rm{\Delta }} ^{\alpha /2}}$$\end{document} is the truncated fractional Laplacian, α ∈ (1, 2) and b ∈ Kdα−1. In the second part, for a more general finite range jump process, we present some sufficient conditions to allow that the two sided estimates of the heat kernel are comparable to the Poisson type function for large distance ∣x − y∣ in short time.
引用
收藏
页码:229 / 248
页数:19
相关论文
共 50 条
  • [31] On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces
    Panki KIM
    Takashi KUMAGAI
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (07) : 1067 - 1086
  • [32] On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces
    Zhen-Qing Chen
    Panki Kim
    Takashi Kumagai
    Acta Mathematica Sinica, English Series, 2009, 25 : 1067 - 1086
  • [33] On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (07) : 1067 - 1086
  • [34] Finite element algorithm for non-symmetric problems
    Laouafa, F
    Royis, P
    NUMERICAL MODELS IN GEOMECHANICS - NUMOG VII, 1999, : 141 - 146
  • [35] Intrinsic ultracontractivity for non-symmetric Levy processes
    Kimy, Panki
    Song, Renming
    FORUM MATHEMATICUM, 2009, 21 (01) : 43 - 66
  • [36] Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1330) : 1 - +
  • [37] Global Dirichlet Heat Kernel Estimates for Symmetric Levy Processes in Half-Space
    Chen, Zhen-Qing
    Kim, Panki
    ACTA APPLICANDAE MATHEMATICAE, 2016, 146 (01) : 113 - 143
  • [38] Poisson kernel and Cauchy formula of a non-symmetric transitive domain
    Lu Qi-Keng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (07) : 1679 - 1684
  • [39] Poisson kernel and Cauchy formula of a non-symmetric transitive domain
    Qi-Keng Lu
    Science China Mathematics, 2010, 53 : 1679 - 1684
  • [40] A kernel bound for non-symmetric stable distribution and its applications
    Jin, Xinghu
    Li, Xiang
    Lu, Jianya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)