Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points

被引:0
|
作者
Itai Benjamini
Nicolas Curien
机构
[1] Weizmann Institute of Science,
[2] École Normale Supérieure,undefined
来源
关键词
Volume Growth; Graph Distance; Simple Random Walk; Simple Boundary; Label Tree;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pioneer points of the simple random walk on the uniform infinite planar quadrangulation (UIPQ) using an adaptation of the peeling procedure of Angel (Geom Funct Anal 13:935–974, 2003) to the quadrangulation case. Our main result is that, up to polylogarithmic factors, n3 pioneer points have been discovered before the walk exits the ball of radius n in the UIPQ. As a result we verify the KPZ relation Knizhnik et al. (Modern Phys Lett A 3:819–826, 1988) in the particular case of the pioneer exponent and prove that the walk is subdiffusive with exponent less than 1/3. Along the way, new geometric controls on the UIPQ are established.
引用
收藏
页码:501 / 531
页数:30
相关论文
共 18 条
  • [1] Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points
    Benjamini, Itai
    Curien, Nicolas
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (02) : 501 - 531
  • [2] Geometry of the uniform infinite half-planar quadrangulation
    Caraceni, Alessandra
    Curien, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (03) : 454 - 494
  • [3] A view from infinity of the uniform infinite planar quadrangulation
    Curien, N.
    Menard, L.
    Miermont, G.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 45 - 88
  • [4] SEPARATING CYCLES AND ISOPERIMETRIC INEQUALITIES IN THE UNIFORM INFINITE PLANAR QUADRANGULATION
    Le Gall, Jean-Francois
    Lehericy, Thomas
    ANNALS OF PROBABILITY, 2019, 47 (03): : 1498 - 1540
  • [5] Geodesic rays in the uniform infinite half-planar quadrangulation return to the boundary
    Baur, Erich
    Miermont, Gregory
    Richier, Loic
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 1123 - 1149
  • [6] Heavy points of a d-dimensional simple random walk
    Csáki, E
    Földes, A
    Révész, P
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (01) : 45 - 57
  • [7] Uniform recursive trees: Branching structure and simple random downward walk
    Su, C
    Feng, QQ
    Hu, ZS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 225 - 243
  • [8] Exponent for sets of frequently visited points of a simple random walk in two dimensions
    Okada, Izumi
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1129 - 1140
  • [9] GEOMETRIC STRUCTURES OF LATE POINTS OF A TWO-DIMENSIONAL SIMPLE RANDOM WALK
    Okada, Izumi
    ANNALS OF PROBABILITY, 2019, 47 (05): : 2869 - 2893
  • [10] Second-Order Term of Cover Time for Planar Simple Random Walk
    Abe, Yoshihiro
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1689 - 1747