Cardiac phase detection in echocardiography using convolutional neural networks

被引:0
|
作者
Moomal Farhad
Mohammad Mehedy Masud
Azam Beg
Amir Ahmad
Luai A. Ahmed
Sehar Memon
机构
[1] United Arab Emirates University,College of Information Technology
[2] United Arab Emirates University,Institute of Public Health, College of Medicine and Health Sciences
[3] Indus Medical College,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Echocardiography is a commonly used and cost-effective test to assess heart conditions. During the test, cardiologists and technicians observe two cardiac phases—end-systolic (ES) and end-diastolic (ED)—which are critical for calculating heart chamber size and ejection fraction. However, non-essential frames called Non-ESED frames may appear between these phases. Currently, technicians or cardiologists manually detect these phases, which is time-consuming and prone to errors. To address this, an automated and efficient technique is needed to accurately detect cardiac phases and minimize diagnostic errors. In this paper, we propose a deep learning model called DeepPhase to assist cardiology personnel. Our convolutional neural network (CNN) learns from echocardiography images to identify the ES, ED, and Non-ESED phases without the need for left ventricle segmentation or electrocardiograms. We evaluate our model on three echocardiography image datasets, including the CAMUS dataset, the EchoNet Dynamic dataset, and a new dataset we collected from a cardiac hospital (CardiacPhase). Our model outperforms existing techniques, achieving 0.96 and 0.82 area under the curve (AUC) on the CAMUS and CardiacPhase datasets, respectively. We also propose a novel cropping technique to enhance the model’s performance and ensure its relevance to real-world scenarios for ES, ED, and Non ES-ED classification.
引用
收藏
相关论文
共 50 条
  • [41] Wrapped phase denoising using convolutional neural networks
    Yan, Ketao
    Yu, Yingjie
    Sun, Tao
    Asundi, Anand
    Kemao, Qian
    OPTICS AND LASERS IN ENGINEERING, 2020, 128
  • [42] A-phase classification using convolutional neural networks
    Edgar R. Arce-Santana
    Alfonso Alba
    Martin O. Mendez
    Valdemar Arce-Guevara
    Medical & Biological Engineering & Computing, 2020, 58 : 1003 - 1014
  • [43] Phase Mapping in EBSD Using Convolutional Neural Networks
    Kaufmann, Kevin
    Zhu, Chaoyi
    Rosengarten, Alexander S.
    Maryanovsky, Daniel
    Wang, Haoren
    Vecchio, Kenneth S.
    MICROSCOPY AND MICROANALYSIS, 2020, 26 (03) : 458 - 468
  • [44] Fall detection using mixtures of convolutional neural networks
    Ha, Thao V.
    Nguyen, Hoang M.
    Thanh, Son H.
    Nguyen, Binh T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 18091 - 18118
  • [45] A Method for Deepfake Detection Using Convolutional Neural Networks
    S. S. Volkova
    Scientific and Technical Information Processing, 2023, 50 : 475 - 485
  • [46] Colonoscopic polyp detection using convolutional neural networks
    Park, Sun Young
    Sargent, Dusty
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2016, 9785
  • [47] MESH SALIENCY DETECTION USING CONVOLUTIONAL NEURAL NETWORKS
    Nousias, Stavros
    Arvanitis, Gerasimos
    Lalos, Aris S.
    Moustakas, Konstantinos
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [48] A Strawberry Detection System Using Convolutional Neural Networks
    Lamb, Nikolas
    Chuah, Mooi Choo
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2515 - 2520
  • [49] Object Tracking and Detection Using Convolutional Neural Networks
    Sujatha, C. N.
    Sahithi, P.
    Hamsini, R.
    Haripriya, M.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 97 - 107
  • [50] Stuttering Detection Using Atrous Convolutional Neural Networks
    Al-Banna, Abedal-Kareem
    Edirisinghe, Eran
    Fang, Hui
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 252 - 256