On the divisibility of sums of even powers of q-binomial coefficients

被引:0
|
作者
Ji-Cai Liu
Xue-Ting Jiang
机构
[1] Wenzhou University,Department of Mathematics
关键词
-Binomial coefficients; -Congruences; Cyclotomic polynomials; 33D15; 11A07; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the divisibility conjecture on sums of even powers of q-binomial coefficients, which was recently proposed by Guo, Schlosser and Zudilin. Our proof relies on two q-harmonic series congruences due to Shi and Pan.
引用
收藏
相关论文
共 50 条
  • [11] Factors of alternating sums of products of binomial and q-binomial coefficients
    Guo, Victor J. W.
    Jouhet, Frederic
    Zeng, Jiang
    ACTA ARITHMETICA, 2007, 127 (01) : 17 - 31
  • [12] Quadratic sums of Gaussian q-binomial coefficients and Fibonomial coefficients
    Chu, Wenchang
    Kilic, Emrah
    RAMANUJAN JOURNAL, 2020, 51 (02): : 229 - 243
  • [13] Quadratic sums of Gaussian q-binomial coefficients and Fibonomial coefficients
    Wenchang Chu
    Emrah Kılıç
    The Ramanujan Journal, 2020, 51 : 229 - 243
  • [14] On some lacunary sums of even powers of binomial coefficients
    Lengyel, Tamas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2381 - 2392
  • [15] Factors of certain sums involving central q-binomial coefficients
    Victor J. W. Guo
    Su-Dan Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [16] Factors of certain sums involving central q-binomial coefficients
    Guo, Victor J. W.
    Wang, Su-Dan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [17] EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-BINOMIAL COEFFICIENTS WITH APPLICATIONS
    Kilic, Emrah
    Prodinger, Helmut
    MATHEMATICA SLOVACA, 2019, 69 (02) : 327 - 338
  • [18] A CONGRUENCE ON Q-BINOMIAL COEFFICIENTS
    Xu, Jie-Hong
    Zhao, Bao-Zhu
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 390 - 393
  • [19] Divisibility of binomial coefficients by powers of two
    Spiegelhofer, Lukas
    Wallner, Michael
    JOURNAL OF NUMBER THEORY, 2018, 192 : 221 - 239
  • [20] SOME q-BINOMIAL COEFFICIENTS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2006, 12 (01) : 13 - 20