Inception-UDet: An Improved U-Net Architecture for Brain Tumor Segmentation

被引:0
|
作者
Aboussaleh I. [1 ]
Riffi J. [1 ]
Mahraz A.M. [1 ]
Tairi H. [1 ]
机构
[1] LISAC Laboratory, Department of Computer Science, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez
关键词
DC-Unet; Deep learning; Inception; Segmentation; Tumor; U-Net; UDet;
D O I
10.1007/s40745-023-00480-6
中图分类号
学科分类号
摘要
Brain tumor segmentation is an important field and a sensitive task in tumor diagnosis. The treatment research in this area has helped specialists in detecting the tumor’s location in order to deal with it in its early stages. Numerous methods based on deep learning, have been proposed, including the symmetric U-Net architectures, which revealed great results in the medical imaging field, precisely brain tumor segmentation. In this paper, we proposed an improved U-Net architecture called Inception U-Det inspired by U-Det. This work aims at employing the inception block instead of the convolution one used in the bi-directional feature pyramid neural (Bi-FPN) network during the skip connection U-Det phase. Furthermore, a comparison study has been performed between our proposed approach and the three known architectures in medical imaging segmentation; U-Net, DC-Unet, and U-Det. Several segmentation metrics have been computed and then taken into account in these methods, by means of the publicly available BraTS datasets. Thus, our obtained results have showed promising results in terms of accuracy, dice similarity coefficient (DSC), and intersection–union ratio (IOU). Moreover, the proposed method has achieved a DSC of 87.9%, 85.5%, and 83.9% on BraTS2020, BraTS2018, and BraTS2017, respectively, calculated from the best fold in fourfold cross-validation employed in the present approach. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
引用
收藏
页码:831 / 853
页数:22
相关论文
共 50 条
  • [31] Path aggregation U-Net model for brain tumor segmentation
    Lin, Fengming
    Wu, Qiang
    Liu, Ju
    Wang, Dawei
    Kong, Xiangmao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22951 - 22964
  • [32] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [33] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [34] Hybrid Pyramid U-Net Model for Brain Tumor Segmentation
    Kong, Xiangmao
    Sun, Guoxia
    Wu, Qiang
    Liu, Ju
    Lin, Fengming
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 346 - 355
  • [35] Path aggregation U-Net model for brain tumor segmentation
    Fengming Lin
    Qiang Wu
    Ju Liu
    Dawei Wang
    Xiangmao Kong
    Multimedia Tools and Applications, 2021, 80 : 22951 - 22964
  • [36] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [37] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [38] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [39] Improved Segmentation by Adversarial U-Net
    Sriker, David
    Cohen, Dana
    Cahan, Noa
    Greenspan, Hayit
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [40] Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
    Aboussaleh, Ilyasse
    Riffi, Jamal
    Fazazy, Khalid El
    Mahraz, Mohamed Adnane
    Tairi, Hamid
    DIAGNOSTICS, 2023, 13 (05)