Intrusion Detection System in Wireless Sensor Network Using Conditional Generative Adversarial Network

被引:0
|
作者
Tanya Sood
Satyartha Prakash
Sandeep Sharma
Abhilash Singh
Hemant Choubey
机构
[1] Gautam Buddha University (GBU),School of Information and Communication Technology
[2] CSIR- Institute for Genomics and Integrative Biology (IGIB),Department of Electronics Engineering
[3] Madhav Institute of Technology and Science,Fluvial Geomorphology and Remote Sensing Laboratory
[4] Indian Institute of Science Education and Research Bhopal,undefined
来源
关键词
Wireless sensor networks; Deep learning; GANs; XGBoost; Security; IDS; Confusion matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Wireless communication networks have much data to sense, process, and transmit. It tends to develop a security mechanism to care for these needs for such modern-day systems. An intrusion detection system (IDS) is a solution that has recently gained the researcher’s attention with the application of deep learning techniques in IDS. In this paper, we propose an IDS model that uses a deep learning algorithm, conditional generative adversarial network (CGAN), enabling unsupervised learning in the model and adding an eXtreme gradient boosting (XGBoost) classifier for faster comparison and visualization of results. The proposed method can reduce the need to deploy extra sensors to generate fake data to fool the intruder 1.2–2.6%, as the proposed system generates this fake data. The parameters were selected to give optimal results to our model without significant alterations and complications. The model learns from its dataset samples with the multiple-layer network for a refined training process. We aimed that the proposed model could improve the accuracy and thus, decrease the false detection rate and obtain good precision in the cases of both the datasets, NSL-KDD and the CICIDS2017, which can be used as a detector for cyber intrusions. The false alarm rate of the proposed model decreases by about 1.827%.
引用
收藏
页码:911 / 931
页数:20
相关论文
共 50 条
  • [21] GVIDS: A Reliable Vehicle Intrusion Detection System Based on Generative Adversarial Network
    Zhao, Yilin
    Xun, Yijie
    Liu, Jiajia
    Ma, Siyu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4310 - 4315
  • [23] An intrusion detection system for wireless sensor networks using deep neural network
    Gowdhaman, V
    Dhanapal, R.
    SOFT COMPUTING, 2022, 26 (23) : 13059 - 13067
  • [24] An intrusion detection system for wireless sensor networks using deep neural network
    V. Gowdhaman
    R. Dhanapal
    Soft Computing, 2022, 26 : 13059 - 13067
  • [25] Trajectory Prediction using Conditional Generative Adversarial Network
    Barbie, Thibault
    Nishida, Takeshi
    PROCEEDINGS OF THE 2017 INTERNATIONAL SEMINAR ON ARTIFICIAL INTELLIGENCE, NETWORKING AND INFORMATION TECHNOLOGY (ANIT 2017), 2017, 150 : 193 - 197
  • [26] Face Identification Using Conditional Generative Adversarial Network
    Jameel, Samer Kais
    Majidpour, Jafar
    Al-Talabani, Abdulbasit K.
    Qadir, Jihad Anwar
    COMPUTER JOURNAL, 2023, 66 (07): : 1687 - 1697
  • [27] A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System
    Jamoos, Mohammad
    Mora, Antonio M.
    AlKhanafseh, Mohammad
    Surakhi, Ola
    ELECTRONICS, 2023, 12 (13)
  • [28] A Capsule Conditional Generative Adversarial Network
    Chang, Jieh-Ren
    Chen, You-Shyang
    Bao Yipeng
    Hsu, Tzu-Lin
    2020 25TH INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2020), 2020, : 175 - 180
  • [29] Intrusion Detection with Federated Learning and Conditional Generative Adversarial Network in Satellite-Terrestrial Integrated Networks
    Jiang, Weiwei
    Han, Haoyu
    Zhang, Yang
    Mu, Jianbin
    Shankar, Achyut
    MOBILE NETWORKS & APPLICATIONS, 2024,
  • [30] Preset Conditional Generative Adversarial Network for Massive MIMO Detection
    Yu, Yongzhi
    Zhang, Shiqi
    Shang, Jiadong
    Wang, Ping
    IET SIGNAL PROCESSING, 2023, 2023 (01)