A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors

被引:0
|
作者
J. D. Gard
D. T. Becker
D. A. Bennett
J. W. Fowler
G. C. Hilton
J. A. B. Mates
C. D. Reintsema
D. R. Schmidt
D. S. Swetz
J. N. Ullom
机构
[1] University of Colorado,Department of Physics
[2] Quantum Sensors Group,undefined
[3] National Institute of Standards and Technology,undefined
来源
关键词
Transition-edge sensors; Firmware; Multiplexing;
D O I
暂无
中图分类号
学科分类号
摘要
The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.
引用
收藏
页码:485 / 497
页数:12
相关论文
共 50 条
  • [21] Transition-edge sensors
    Irwin, KD
    Hilton, GC
    CRYOGENIC PARTICLE DETECTION, 2005, 99 : 63 - 149
  • [22] Low-noise microwave SQUID multiplexed readout of 38 x-ray transition-edge sensor microcalorimeters
    Nakashima, Y.
    Hirayama, F.
    Kohjiro, S.
    Yamamori, H.
    Nagasawa, S.
    Sato, A.
    Yamada, S.
    Hayakawa, R.
    Yamasaki, N. Y.
    Mitsuda, K.
    Nagayoshi, K.
    Akamatsu, H.
    Gottardi, L.
    Taralli, E.
    Bruijn, M. P.
    Ridder, M. L.
    Gao, J. R.
    den Herder, J. W. A.
    APPLIED PHYSICS LETTERS, 2020, 117 (12)
  • [23] Development of microwave multiplexer for Super DIOS mission: 38 transition-edge sensor X-ray microcalorimeter readout with microwave multiplexing
    Nakashima, Yuki
    Hirayama, Fuminori
    Kohjiro, Satoshi
    Yamamori, Hirotake
    Nagasawa, Shuichi
    Sato, Akira
    Yamada, Shinya
    Hayakawa, Ryota
    Yamasaki, Noriko N.
    Mitsuda, Kazuhisa
    Nagayoshi, Kenichiro
    Akamatsu, Hiroki
    Gottardi, Luciano
    Taralli, Emanuele
    Bruijn, Marcel P.
    Ridder, Marcel L.
    Gao, Jian-Rong
    den Herder, Jan-Willem
    X-RAY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY IX, 2020, 11454
  • [24] SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters
    Takei, Y.
    Yamasaki, N. Y.
    Hirakoso, W.
    Kimura, S.
    Mitsuda, K.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (11):
  • [25] Transition-Edge Sensors for HOLMES
    Puiu, A.
    Becker, D.
    Bennett, D.
    Biasotti, M.
    Borghesi, M.
    De Gerone, M.
    Faverzani, M.
    Ferri, E.
    Fowler, J.
    Gallucci, G.
    Gard, J.
    Gatti, F.
    Hilton, G.
    Giachero, A.
    Mates, J.
    Nucciotti, A.
    Pessina, G.
    Schmidt, D.
    Swetz, D.
    Ullom, J.
    Vale, L.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 716 - 722
  • [26] SQUIDs and Transition-Edge Sensors
    Irwin, Kent D.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2021, 34 (06) : 1601 - 1606
  • [27] SQUIDs and Transition-Edge Sensors
    Kent D. Irwin
    Journal of Superconductivity and Novel Magnetism, 2021, 34 : 1601 - 1606
  • [28] A frequency-domain SQUID multiplexer for arrays of transition-edge superconducting sensors
    Lanting, TM
    Cho, HM
    Clarke, J
    Dobbs, M
    Lee, AT
    Richards, PL
    Smith, AD
    Spieler, HG
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 626 - 629
  • [29] Transition-Edge Sensors for HOLMES
    A. Puiu
    D. Becker
    D. Bennett
    M. Biasotti
    M. Borghesi
    M. De Gerone
    M. Faverzani
    E. Ferri
    J. Fowler
    G. Gallucci
    J. Gard
    F. Gatti
    G. Hilton
    A. Giachero
    J. Mates
    A. Nucciotti
    G. Pessina
    D. Schmidt
    D. Swetz
    J. Ullom
    L. Vale
    Journal of Low Temperature Physics, 2020, 199 : 716 - 722
  • [30] An RF Electronics Subsystem for Microwave Multiplexed Cryogenic Transition-Edge Sensor Readout
    Mishra, Namit
    Van Winkle, Dan
    Ruckman, Larry
    Herbst, Ryan
    Henderson, Shawn
    Frisch, Joe
    Ahmed, Zeeshan
    2023 IEEE USNC-URSI RADIO SCIENCE MEETING, JOINT WITH AP-S SYMPOSIUM, 2023, : 121 - 122