Bayesian analysis of autoregressive time series with change points

被引:0
|
作者
Maria Maddalena Barbieri
Caterina Conigliani
机构
[1] Università di Roma Tre,Dipartimento di Studi Geoeconomici, Statistici, Storici per l’Analisi Regionale
[2] Università di Roma «La Sapienza»,undefined
关键词
Autoregressive time series; change in the mean; fractional Bayes factor; non-informative prior distributions;
D O I
10.1007/BF03178933
中图分类号
学科分类号
摘要
The paper deals with the identification of a stationary autoregressive model for a time series and the contemporary detection of a change in its mean. We adopt the Bayesian approach with weak prior information on the parameters of the models under comparison and an exact form of the likelihood function. When necessary, we resort to fractional Bayes factors to choose between models, and to importance sampling to solve computational issues.
引用
收藏
相关论文
共 50 条
  • [41] Change points detection for nonstationary multivariate time series
    Park, Yeonjoo
    Im, Hyeongjun
    Lim, Yaeji
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (04) : 369 - 388
  • [42] Dynamic Detection of Change Points in Long Time Series
    Nicolas Chopin
    Annals of the Institute of Statistical Mathematics, 2007, 59 : 349 - 366
  • [43] Confidence curves for change points in hydrometeorological time series
    Zhou, Changrang
    van Nooijen, Ronald
    Kolechkina, Alla
    van de Giesen, Nick
    JOURNAL OF HYDROLOGY, 2020, 590
  • [44] Bayesian analysis of high-frequency water temperature time series through Markov switching autoregressive models
    Spezia, Luigi
    Gibbs, Sheila
    Glendell, Miriam
    Helliwell, Rachel
    Paroli, Roberta
    Pohle, Ina
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 167
  • [45] AUTOREGRESSIVE TIME-SERIES ANALYSIS VIA REPRESENTATIVES
    TEODORESCU, D
    TEODORESCU, R
    BIOLOGICAL CYBERNETICS, 1984, 51 (02) : 79 - 86
  • [46] Optimal Change-Point Sequential Detection in Autoregressive Time Series
    Pergamenchtchikov, Serguei
    Tenzin, Roman
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 342 - 348
  • [47] Multiple change point detection and validation in autoregressive time series data
    Lijing Ma
    Andrew J. Grant
    Georgy Sofronov
    Statistical Papers, 2020, 61 : 1507 - 1528
  • [48] Multiple change point detection and validation in autoregressive time series data
    Ma, Lijing
    Grant, Andrew J.
    Sofronov, Georgy
    STATISTICAL PAPERS, 2020, 61 (04) : 1507 - 1528
  • [49] Multiscale spectral analysis for detecting short and long range change points in time series
    Olsen, Lena Ringstad
    Chaudhuri, Probal
    Godtliebsen, Fred
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (07) : 3310 - 3330
  • [50] Automated Triage of Performance Change Points Using Time Series Analysis and Machine Learning
    Bauer, Andre
    Straesser, Martin
    Beierlieb, Lukas
    Meissner, Maximilian
    Kounev, Samuel
    COMPANION OF THE 2022 ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, ICPE 2022, 2022, : 29 - 32