Double interlacing between zeros of modular forms

被引:0
|
作者
Hui Xue
Daozhou Zhu
机构
[1] Clemson University,School of Mathematical and Statistical Sciences
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Eisenstein series; Zeros of modular forms; Doubly interlace; 11F11; 11F03;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 10$$\end{document} be even. We prove that the j-invariants of the non-elliptic zeros of aE2k(z)-Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$aE_{2k}(z)-E_k^2(z)$$\end{document} for a>2.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>2.63$$\end{document} andbE2k(z)+Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bE_{2k}(z)+E_k^2(z)$$\end{document} for b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document} are real and doubly interlace.
引用
收藏
页码:463 / 483
页数:20
相关论文
共 50 条
  • [21] Interlacing of zeros of period polynomials
    Breland, Leanna
    Le, Kevin Huu
    Ni, Jingchen
    O'brien, Laura
    Xue, Hui
    Zhu, Daozhou
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2025, 77 (01) : 255 - 299
  • [22] Stieltjes interlacing of the zeros of jn
    Frendreiss, William
    Gao, Jennifer
    Lei, Austin
    Woodall, Amy
    Xue, Hui
    Zhu, Daozhou
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022,
  • [23] INTERLACING OF ZEROS OF EISENSTEIN SERIES
    Griffin, Trevor
    Kenshur, Nathan
    Price, Abigail
    Vandenberg-Daves, Bradshaw
    Xue, Hui
    Zhu, Daozhou
    KYUSHU JOURNAL OF MATHEMATICS, 2021, 75 (02) : 249 - 272
  • [24] Interlacing zeros and divided differences
    Il'yuta, GG
    RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (05) : 956 - 958
  • [25] On the interlacing of the zeros of Poincaré series
    Ekata Saha
    N. Saradha
    The Ramanujan Journal, 2020, 53 : 439 - 465
  • [26] The zeros of certain weakly holomorphic Drinfeld modular forms
    SoYoung Choi
    Bo-Hae Im
    Manuscripta Mathematica, 2014, 144 : 503 - 515
  • [27] The zeros of certain weakly holomorphic Drinfeld modular forms
    Choi, SoYoung
    Im, Bo-Hae
    MANUSCRIPTA MATHEMATICA, 2014, 144 (3-4) : 503 - 515
  • [28] Proportion of modular forms with transcendental zeros for general levels
    Choi, Dohoon
    Lee, Youngmin
    Lim, Subong
    Ryu, Jaegwang
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2023, 99 (02) : 19 - 22
  • [29] Zeros of weakly holomorphic modular forms of level 5
    Hanamoto, Seiichi
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 195 - 207
  • [30] ZEROS OF WEAKLY HOLOMORPHIC MODULAR FORMS OF LEVEL 4
    Haddock, Andrew
    Jenkins, Paul
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (02) : 455 - 470