Double interlacing between zeros of modular forms

被引:0
|
作者
Hui Xue
Daozhou Zhu
机构
[1] Clemson University,School of Mathematical and Statistical Sciences
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Eisenstein series; Zeros of modular forms; Doubly interlace; 11F11; 11F03;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 10$$\end{document} be even. We prove that the j-invariants of the non-elliptic zeros of aE2k(z)-Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$aE_{2k}(z)-E_k^2(z)$$\end{document} for a>2.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>2.63$$\end{document} andbE2k(z)+Ek2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bE_{2k}(z)+E_k^2(z)$$\end{document} for b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document} are real and doubly interlace.
引用
收藏
页码:463 / 483
页数:20
相关论文
共 50 条
  • [1] Double interlacing between zeros of modular forms
    Xue, Hui
    Zhu, Daozhou
    RAMANUJAN JOURNAL, 2023, 60 (02): : 463 - 483
  • [2] Interlacing properties for zeros of a family of modular forms
    Frendreiss, William
    Gao, Jennifer
    Lei, Austin
    Woodall, Amy
    Xue, Hui
    Zhu, Daozhou
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (02) : 441 - 470
  • [3] On interlacing of the zeros of a certain family of modular forms
    Saha, Ekata
    Saradha, N.
    JOURNAL OF NUMBER THEORY, 2018, 183 : 213 - 232
  • [4] Interlacing of zeros of certain weakly holomorphic modular forms for Γ+0(2)
    Choi, SoYoung
    Im, Bo-Hae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 292 - 313
  • [5] On the interlacing of the zeros of certain Poincare cusp forms
    Dhillon, Sonika
    Kala, Divyanshu
    Saha, Ekata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [6] On the zeros of certain modular forms
    Kaneko, M
    NUMBER THEORY AND ITS APPLICATIONS, 1999, 2 : 193 - 197
  • [7] On zeros of quasi-modular forms
    Balasubramanian, R.
    Gun, Sanoli
    JOURNAL OF NUMBER THEORY, 2012, 132 (10) : 2228 - 2241
  • [8] On the asymptotic distribution of zeros of modular forms
    Rudnick, Z
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (34) : 2059 - 2074
  • [9] On the zeros of weakly holomorphic modular forms
    Gun, Sanoli
    Saha, Biswajyoti
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 531 - 543
  • [10] Density of modular forms with transcendental zeros
    Choi, Dohoon
    Lee, Youngmin
    Lim, Subong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)