Local Chromatic Number, KY Fan's Theorem, And Circular Colorings

被引:0
|
作者
Gábor Simonyi*
Gábor Tardos†
机构
[1] Hungarian Academy of Sciences,Alfréd Rényi Institute of Mathematics
[2] Simon Fraser University,School of Computing Science
[3] Hungarian Academy of Sciences,Alfréd Rényi Institute of Mathematics
来源
Combinatorica | 2006年 / 26卷
关键词
05C15; 55U10;
D O I
暂无
中图分类号
学科分类号
摘要
The local chromatic number of a graph was introduced in [14]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the Schrijver (or stable Kneser) graphs; Mycielski graphs, and their generalizations; and Borsuk graphs. We give more or less tight bounds for the local chromatic number of many of these graphs.
引用
收藏
页码:587 / 626
页数:39
相关论文
共 50 条
  • [41] Strong Convergence Theorem for the Lexicographic Ky Fan Inequality
    Anh P.N.
    Thuy L.Q.
    Anh T.T.H.
    Vietnam Journal of Mathematics, 2018, 46 (3) : 517 - 530
  • [42] Wielandt and Ky-Fan theorem for matrix pairs
    Nakic, I
    Veselic, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 77 - 93
  • [43] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [44] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [45] DP-colorings of graphs with high chromatic number
    Bernshteyn, Anton
    Kostochka, Alexandr
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 65 : 122 - 129
  • [46] T-colorings and chromatic number of distance graphs
    Liu, DDF
    ARS COMBINATORIA, 2000, 56 : 65 - 80
  • [47] Circular chromatic number of subgraphs
    Hajiabolhassan, H
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2003, 44 (02) : 95 - 105
  • [48] Circular chromatic number of hypergraphs
    Eslahchi, C
    Rafiey, A
    ARS COMBINATORIA, 2004, 73 : 239 - 246
  • [49] Circular chromatic number: a survey
    Zhu, XD
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 371 - 410
  • [50] The circular chromatic number of a digraph
    Bokal, D
    Fijavz, G
    Juvan, M
    Kayll, PM
    Mohar, B
    JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 227 - 240