Positive Exponents for Random Products of Conservative Surface Diffeomorphisms and Some Skew Products

被引:0
|
作者
Davi Obata
Mauricio Poletti
机构
[1] Université Paris-Sud 11,CNRS
[2] Universidade Federal do Rio de Janeiro,Laboratoire de Mathématiques d’Orsay, UMR 8628
关键词
Lyapunov exponents; Non-uniform hyperbolicity; Skew products; Random products of diffeomorphisms; Conservative dynamics; 37D25; 37D30; 37H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that a “typical” random product of conservative surface diffeomorphism has positive Lyapunov exponents. We prove that for any compact oriented surface S, any r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 1$$\end{document}, and any d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, there exists a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-open and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-dense subset of Diffvolr(S)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Diff}}^r_{{\text {vol}}}(S)^d$$\end{document} such that if (f1,…,fd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_1, \ldots , f_d)$$\end{document} belongs to this subset, the random product generated by them has positive Lyapunov exponents. Our proof also allows us to deal with more general skew products, for example skew products with a volume preserving Anosov diffeomorphism on the basis, or with a subshift of finite type on the basis preserving a measure with product structure. In these cases we prove the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-density and Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-openness of the existence of positive Lyapunov exponents.
引用
收藏
页码:2405 / 2428
页数:23
相关论文
共 50 条
  • [31] Equality of Lyapunov and Stability Exponents for Products of Isotropic Random Matrices
    Reddy, Nanda Kishore
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (02) : 606 - 624
  • [32] On the Gap Between Random Dynamical Systems and Continuous Skew Products
    Arno Berger
    Stefan Siegmund
    Journal of Dynamics and Differential Equations, 2003, 15 (2-3) : 237 - 279
  • [33] MEASURE RIGIDITY FOR RANDOM DYNAMICS ON SURFACES AND RELATED SKEW PRODUCTS
    Brown, Aaron
    Hertz, Federico Rodriguez
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (04) : 1055 - 1132
  • [34] Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
    L. J. Díaz
    K. Gelfert
    M. Rams
    Communications in Mathematical Physics, 2019, 367 : 351 - 416
  • [35] Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
    Diaz, L. J.
    Gelfert, K.
    Rams, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (02) : 351 - 416
  • [36] EVOLUTIONARY FORMALISM FOR PRODUCTS OF POSITIVE RANDOM MATRICES
    Arnold, Ludwig
    Gundlach, Volker Matthias
    Demetrius, Lloyd
    ANNALS OF APPLIED PROBABILITY, 1994, 4 (03): : 859 - 901
  • [37] Stable laws and products of positive random matrices
    Hennion, H.
    Herve, L.
    JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (04) : 966 - 981
  • [38] Stable Laws and Products of Positive Random Matrices
    H. Hennion
    L. Hervé
    Journal of Theoretical Probability, 2008, 21 : 966 - 981
  • [39] Limit theorems for products of positive random matrices
    Hennion, H
    ANNALS OF PROBABILITY, 1997, 25 (04): : 1545 - 1587
  • [40] Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles
    Bezerra, Jamerson
    Sanchez, Adriana
    Tall, El Hadji Yaya
    NONLINEARITY, 2023, 36 (06) : 3467 - 3482