Identifying important biomarkers that are predictive for cancer patients’ prognosis is key in gaining better insights into the biological influences on the disease and has become a critical component of precision medicine. The emergence of large-scale biomedical survival studies, which typically involve excessive number of biomarkers, has brought high demand in designing efficient screening tools for selecting predictive biomarkers. The vast amount of biomarkers defies any existing variable selection methods via regularization. The recently developed variable screening methods, though powerful in many practical setting, fail to incorporate prior information on the importance of each biomarker and are less powerful in detecting marginally weak while jointly important signals. We propose a new conditional screening method for survival outcome data by computing the marginal contribution of each biomarker given priorily known biological information. This is based on the premise that some biomarkers are known to be associated with disease outcomes a priori. Our method possesses sure screening properties and a vanishing false selection rate. The utility of the proposal is further confirmed with extensive simulation studies and analysis of a diffuse large B-cell lymphoma dataset. We are pleased to dedicate this work to Jack Kalbfleisch, who has made instrumental contributions to the development of modern methods of analyzing survival data.
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R ChinaE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Zhang, Junying
Zhang, Riquan
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R ChinaE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Zhang, Riquan
Lu, Zhiping
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China
Xie, Jinhan
Lin, Yuanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China
Lin, Yuanyuan
Yan, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Econ, Jinan, Shandong, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China
Yan, Xiaodong
Tang, Niansheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming, Yunnan, Peoples R China