Health assessment and life prediction of cutting tools based on support vector regression

被引:1
|
作者
T. Benkedjouh
K. Medjaher
N. Zerhouni
S. Rechak
机构
[1] EMP,Laboratoire de Mécanique des Structures (LMS)
[2] Université de Franche-Comté/CNRS/ENSMM/UTBM,Automatic Control and Micro
[3] ENP,Mechatronic Systems Department, FEMTO
来源
关键词
Tool condition monitoring; Feature extraction and reduction; Prognostics; Remaining useful life; Support vector regression;
D O I
暂无
中图分类号
学科分类号
摘要
The integrity of machining tools is important to maintain a high level of surface quality. The wear of the tool can lead to poor surface quality of the workpiece and even to damage of the machine. Furthermore, in some applications such as aeronautics and precision engineering, it is preferable to change the tool earlier rather than to loose the workpiece because of its high price compared to the tool’s one. Thus, to maintain a high quality of the manufactured pieces, it is necessary to assess and predict the level of wear of the cutting tool. This can be done by using condition monitoring and prognostics. The aim is then to estimate and predict the amount of wear and calculate the remaining useful life (RUL) of the cutting tool. This paper presents a method for tool condition assessment and life prediction. The method is based on nonlinear feature reduction and support vector regression. The number of original features extracted from the monitoring signals is first reduced. These features are then used to learn nonlinear regression models to estimate and predict the level of wear. The method is applied on experimental data taken from a set of cuttings and simulation results are given. These results show that the proposed method is suitable for assessing the wear evolution of the cutting tools and predicting their RUL. This information can then be used by the operators to take appropriate maintenance actions.
引用
收藏
页码:213 / 223
页数:10
相关论文
共 50 条
  • [31] Battery remaining useful life prediction algorithm based on support vector regression and unscented particle filter
    Peng, Xi
    Zhang, Chao
    Yu, Yang
    Zhou, Yong
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [32] A New Approach to Cutting Temperature Prediction Using Support Vector Regression and Ant Colony Optimization
    Zeng Dehuai
    Liu Yuan
    Jiang Lianbo
    Li Li
    Xu Gang
    SMART TECHNOLOGIES FOR COMMUNICATION, 2012, 4 : 145 - 152
  • [33] Health assessment and life prediction model of hydraulic support
    Ma X.
    Wang Y.
    Tian M.
    Xu C.
    Song J.
    Chen K.
    Song D.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2021, 49 (03): : 141 - 148
  • [34] Vector field-based support vector regression for building energy consumption prediction
    Zhong, Hai
    Wang, Jiajun
    Jia, Hongjie
    Mu, Yunfei
    Lv, Shilei
    APPLIED ENERGY, 2019, 242 : 403 - 414
  • [35] A Prediction Framework for State of Health of Lithium-Ion Batteries Based on Improved Support Vector Regression
    Qiang, Hao
    Zhang, Wanjie
    Ding, Kecheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (11)
  • [36] Prediction of Building Lighting Energy Consumption Based on Support Vector Regression
    Liu, Dandan
    Chen, Qijun
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [37] A new probabilistic prediction approach based on local ν-support vector regression
    Zhang, Yong-Ming
    Chen, Lie
    Qi, Wei-Gui
    Tang, Hai-Yan
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 728 - 733
  • [38] The Engine Combustion Phasing Prediction Based on the Support Vector Regression Method
    Wang, Qifan
    Yang, Ruomiao
    Sun, Xiaoxia
    Liu, Zhentao
    Zhang, Yu
    Fu, Jiahong
    Li, Ruijie
    PROCESSES, 2022, 10 (04)
  • [39] Prediction of Mechanical Properties of Welded Joints Based on Support Vector Regression
    Gao Shuangsheng
    Tang Xingwei
    Ji Shude
    Yang Zhitao
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1471 - 1475
  • [40] PREDICTION OF RESPIRATORY MOTION USING WAVELET BASED SUPPORT VECTOR REGRESSION
    Duerichen, Robert
    Wissel, Tobias
    Schweikard, Achim
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,