Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes

被引:0
|
作者
Simone Rubinacci
Robin J. Hofmeister
Bárbara Sousa da Mota
Olivier Delaneau
机构
[1] University of Lausanne,Department of Computational Biology
[2] Swiss Institute of Bioinformatics,undefined
来源
Nature Genetics | 2023年 / 55卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The release of 150,119 UK Biobank sequences represents an unprecedented opportunity as a reference panel to impute low-coverage whole-genome sequencing data with high accuracy but current methods cannot cope with the size of the data. Here we introduce GLIMPSE2, a low-coverage whole-genome sequencing imputation method that scales sublinearly in both the number of samples and markers, achieving efficient whole-genome imputation from the UK Biobank reference panel while retaining high accuracy for ancient and modern genomes, particularly at rare variants and for very low-coverage samples.
引用
收藏
页码:1088 / 1090
页数:2
相关论文
共 50 条
  • [41] SNP genotyping and parameter estimation in polyploids using low-coverage sequencing data
    Blischak, Paul D.
    Kubatko, Laura S.
    Wolfe, Andrea D.
    BIOINFORMATICS, 2018, 34 (03) : 407 - 415
  • [42] Comparing a few SNP calling algorithms using low-coverage sequencing data
    Yu, Xiaoqing
    Sun, Shuying
    BMC BIOINFORMATICS, 2013, 14
  • [43] An automated, low-cost library preparation protocol for low-coverage whole genome sequencing-based genotype imputation
    Cattaneo, Pietro
    Cerutti, Lorenzo
    Howald, Cedric
    Bueno, Manuel
    Khatibi, Khatiba
    Mannik, Katrin
    Xenarios, Ioannis
    Harshman, Keith
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 611 - 612
  • [44] A computational approach for positive genetic identification and relatedness detection from low-coverage shotgun sequencing data
    Nguyen, Remy
    Kapp, Joshua D.
    Sacco, Samuel
    Myers, Steven P.
    Green, Richard E.
    JOURNAL OF HEREDITY, 2023, : 504 - 512
  • [45] Imputation strategies for low-coverage whole-genome sequencing data and their effects on genomic prediction and genome-wide association studies in pigs
    Wang, X. Q.
    Wang, L. G.
    Shi, L. . Y.
    Tian, J. J.
    Li, M. . Y.
    Wang, L. . X.
    Zhao, F. P.
    ANIMAL, 2024, 18 (09)
  • [46] ACE: absolute copy number estimation from low-coverage whole-genome sequencing data
    Poell, Jos B.
    Mendeville, Matias
    Sie, Daoud
    Brink, Arjen
    Brakenhoff, Ruud H.
    Ylstra, Bauke
    BIOINFORMATICS, 2019, 35 (16) : 2847 - 2849
  • [47] Reveel: large-scale population genotyping using low-coverage sequencing data
    Huang, Lin
    Wang, Bo
    Chen, Ruitang
    Bercovici, Sivan
    Batzoglou, Serafim
    BIOINFORMATICS, 2016, 32 (11) : 1686 - 1696
  • [48] Potential of Low-Coverage Genotyping-by-Sequencing and Imputation for Cost-Effective Genomic Selection in Biparental Segregating Populations
    Gorjanc, Gregor
    Dumasy, Jean-Francois
    Gonen, Serap
    Gaynor, R. Chris
    Antolin, Roberto
    Hickey, John M.
    CROP SCIENCE, 2017, 57 (03) : 1404 - 1420
  • [49] Development and evaluation of a haplotype reference panel for low-coverage whole genome sequencing genotype imputation in turbot (Scophthalmus maximus)
    Cao, Junwen
    Huang, Zhihui
    Ma, Aijun
    Jiang, Yuhang
    Zhang, Hao
    Zhang, Rongchao
    Wang, Xinan
    Liu, Zhifeng
    Xu, Rongjing
    AQUACULTURE REPORTS, 2025, 41
  • [50] Next-Generation Sequencing Data Analysis on Pool-Seq and Low-Coverage Retinoblastoma Data
    Ozdemir Ozdogan, Gulistan
    Kaya, Hilal
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2020, 12 (03) : 302 - 310