Diabetic retinopathy detection using supervised and unsupervised deep learning: a review study

被引:2
|
作者
Naz, Huma [1 ]
Ahuja, Neelu Jyothi [1 ]
Nijhawan, Rahul [2 ]
机构
[1] Univ Petr & Energy Studies Dehradun, Sch Comp Sci, Dehra Dun, India
[2] Thapar Inst Engn & Technol, Patiala, Punjab, India
关键词
DR detection; Diabetic Retinopathy review; Unsupervised deep learning; Supervised learning; BLOOD-VESSEL SEGMENTATION; IMAGE-PROCESSING TECHNIQUES; FUNDUS IMAGES; RETINAL IMAGES; AUTOMATIC DETECTION; NEURAL-NETWORKS; CLASSIFICATION; SYSTEM; MICROANEURYSMS; EXTRACTION;
D O I
10.1007/s10462-024-10770-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The severe progression of Diabetes Mellitus (DM) stands out as one of the most significant concerns for healthcare officials worldwide. Diabetic Retinopathy (DR) is a common complication associated with diabetes, particularly affecting individuals between the ages of 18 and 65. As per the findings of the International Diabetes Federation (IDF) report, 35-60% of individuals suffering from DR possess a diabetes history. DR emerges as a leading cause of worldwide visual impairment. Due to the absence of ophthalmologists worldwide, insufficient health resources, and healthcare services, patients cannot get timely eye screening services. Automated computer-aided detection of DR provides a wide range of potential benefits. In contrast to traditional observer-driven techniques, automatic detection allows for a more objective analysis of numerous images in a shorter time. Moreover, Unsupervised Learning (UL) holds a high potential for image classification in healthcare, particularly regarding explainability and interpretability. Many studies on the detection of DR with both supervised and unsupervised Deep Learning (DL) methodologies are available. Surprisingly, none of the reviews presented thus far have highlighted the potential benefits of both supervised and unsupervised DL methods in Medical Imaging for the detection of DR. After a rigorous selection process, 103 articles were retrieved from four diverse and well-known databases (Web of Science, Scopus, ScienceDirect, and IEEE). This review provides a comprehensive summary of both supervised and unsupervised DL methods applied in DR detection, explaining the significant benefits of both techniques and covering aspects such as datasets, pre-processing, segmentation techniques, and supervised and unsupervised DL methods for detection. The insights from this review will aid academics and researchers in medical imaging to make informed decisions and choose the best practices for DR detection.
引用
收藏
页数:66
相关论文
共 50 条
  • [41] Diabetic retinopathy detection by optimized deep learning model
    Rachapudi, Venubabu
    Rao, K. Subba
    Rao, T. Subha Mastan
    Dileep, P.
    Deepika Roy, T. L.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27949 - 27971
  • [42] Deep Learning for Detection and Severity Classification of Diabetic Retinopathy
    Jain, Anuj
    Jalui, Arnav
    Jasani, Jahanvi
    Lahoti, Yash
    Karani, Ruhina
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [43] Deep Learning Based Models for Detection of Diabetic Retinopathy
    Akgul, Ismail
    Yavuz, Omer Cagri
    Yavuz, Ugur
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2023, 17 (04): : 581 - 587
  • [44] On Deep Learning based algorithms for Detection of Diabetic Retinopathy
    Thanati, Haneesha
    Chalakkal, Renoh Johnson
    Abdulla, Waleed H.
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 197 - 203
  • [45] Diabetic retinopathy detection by optimized deep learning model
    Venubabu Rachapudi
    K. Subba Rao
    T. Subha Mastan Rao
    P. Dileep
    T.L. Deepika Roy
    Multimedia Tools and Applications, 2023, 82 : 27949 - 27971
  • [46] A deep learning model framework for diabetic retinopathy detection
    Padmapriya M.
    Pasupathy S.
    Sumathi R.
    Punitha V.
    International Journal of Networking and Virtual Organisations, 2022, 27 (02): : 107 - 124
  • [47] A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection
    Qummar, Sehrish
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    Shamshirband, Shahaboddin
    Rehman, Zia Ur
    Khan, Iftikhar Ahmed
    Jadoon, Waqas
    IEEE ACCESS, 2019, 7 : 150530 - 150539
  • [49] Real detection intrusion using supervised and unsupervised Learning
    Harbi, Nouria
    Bahri, Emna
    2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 321 - 326
  • [50] Investigation of Fundus Images for Detection of Diabetic Retinopathy Stage Using Deep Learning
    Basarab, M. R.
    Ivanko, K. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (94): : 49 - 57