A disjunctive cutting plane procedure for general mixed-integer linear programs

被引:0
|
作者
Jonathan H. Owen
Sanjay Mehrotra
机构
[1] GM R&D Center,
[2] Mail Code 480-106-359,undefined
[3] 30500 Mound Road,undefined
[4] Warren,undefined
[5] MI 48090-9055,undefined
[6] USA,undefined
[7] e-mail: jonathan.owen@gm.com,undefined
[8] Department of Industrial Engineering and Management Sciences,undefined
[9] Robert R. McCormick School of Engineering,undefined
[10] Northwestern University,undefined
[11] Evanston,undefined
[12] Illinois 60208,undefined
[13] USA,undefined
[14] e-mail: mehrotra@iems.nwu.edu,undefined
来源
Mathematical Programming | 2001年 / 89卷
关键词
Key words: mixed integer programming; Mathematics Subject Classification (1991): 90C10, 90C11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a cutting plane algorithm for solving mixed-integer linear programs with general-integer variables. A novel feature of the algorithm is that it generates inequalities at all γ-optimal vertices of the LP-relaxation at each iteration. The cutting planes generated in the procedure are found by considering a natural generalization of the 0-1 disjunction used by Balas, Ceria, and Cornuéjols in the context of solving binary mixed-integer linear programs [3, 4].
引用
收藏
页码:437 / 448
页数:11
相关论文
共 50 条
  • [31] Learning To Scale Mixed-Integer Programs
    Berthold, Timo
    Hendel, Gregor
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3661 - 3668
  • [32] On Mixed-Integer Random Convex Programs
    Calafiore, Giuseppe C.
    Lyons, Daniel
    Fagiano, Lorenzo
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3508 - 3513
  • [33] Parametric problems of PROLP - Application to solution of mixed-integer linear programs
    Shimizu, Y
    KAGAKU KOGAKU RONBUNSHU, 1996, 22 (05) : 1046 - 1054
  • [34] Parametric problems of PROLP - Application to solution of mixed-integer linear programs
    Research Reactor Institute, Kyoto University, Sennan-gun
    590-04, Japan
    Kagaku Kogaku Ronbunshu, 5 (1046-1054):
  • [35] A METHOD FOR DECOMPOSING MIXED-INTEGER LINEAR-PROGRAMS WITH STAIRCASE STRUCTURE
    SANNOMIYA, N
    OKAMOTO, K
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1985, 16 (01) : 99 - 111
  • [36] Using diversification, communication and parallelism to solve mixed-integer linear programs
    Carvajal, R.
    Ahmed, S.
    Nemhauser, G.
    Furman, K.
    Goel, V.
    Shao, Y.
    OPERATIONS RESEARCH LETTERS, 2014, 42 (02) : 186 - 189
  • [37] Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods
    Trespalacios, Francisco
    Grossmann, Ignacio E.
    CHEMIE INGENIEUR TECHNIK, 2014, 86 (07) : 991 - 1012
  • [38] A Hybrid Multiple Populations Evolutionary Algorithm for Two-Stage Stochastic Mixed-Integer Disjunctive Programs
    Tometzki, Thomas
    Engell, Sebastian
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1784 - 1790
  • [39] Cutting plane versus compact formulations for uncertain (integer) linear programs
    Fischetti M.
    Monaci M.
    Mathematical Programming Computation, 2012, 4 (3) : 239 - 273
  • [40] Cutting planes for mixed-integer knapsack polyhedra
    Yan, XQ
    Boyd, EA
    MATHEMATICAL PROGRAMMING, 1998, 81 (02) : 257 - 262