Graph correlation-refined centroids for unsupervised person re-identification

被引:0
|
作者
Xin Zhang
Keren Fu
Yanci Zhang
机构
[1] Sichuan University,National Key Laboratory of Fundamental Science on Synthetic Vision
[2] College of Computer Science,undefined
[3] Sichuan University,undefined
来源
关键词
Computer vision; Unsupervised learning; Person re-identification;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims at studying unsupervised person re-identification (re-ID) which does not require any annotations. Recently, many approaches tackle this problem through contrastive learning due to its effective feature representation for unsupervised tasks. Especially, a uni-centroid representation is always obtained by averaging all the instance features within a cluster having the same pseudolabel. However, due to the unsatisfied clustering results, a cluster often contains some noisy samples, making the generated centroids imperfect. To address this issue, we propose a new graph correlation module (GCM) that can adaptively mine the relationship between each sample within the cluster and a high-quality relation-aware centroid is formed for momentum updating. Moreover, to increase the complexity of the task and prevent the model from falling into a local optimum, the original features extracted from the model are directly used to update the corresponding centroid. Extensive experiments demonstrate the superiority of the proposed method over state-of-the-art approaches on fully unsupervised re-ID tasks.
引用
收藏
页码:1457 / 1464
页数:7
相关论文
共 50 条
  • [21] MCFR: multi-confidence contrastive learning with feature refined for unsupervised person re-identification
    Wanru Peng
    Houjin Chen
    Yanfeng Li
    Jia Sun
    The Visual Computer, 2024, 40 : 1853 - 1866
  • [22] Unsupervised Person Re-identification Based on Skeleton Joints Using Graph Convolutional Networks
    Khaldi, Khadija
    Mantini, Pranav
    Shah, Shishir K.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13233 LNCS : 135 - 146
  • [23] Dynamic Hybrid Graph Matching for Unsupervised Video-based Person Re-identification
    Xu, Xiaoyue
    Chen, Ying
    Chen, Qiaoyuan
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (01)
  • [24] Projective Weight-based Unsupervised Laplacian Graph Learning for Person Re-identification
    Gao, Bin
    Zhao, Li
    Lan, Peng
    Sun, Fenggang
    Yu, Zhanke
    Pang, Xiumei
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), 2018,
  • [25] Unsupervised Person Re-identification Based on Skeleton Joints Using Graph Convolutional Networks
    Khaldi, Khadija
    Mantini, Pranav
    Shah, Shishir K.
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 135 - 146
  • [26] Graph Correspondence Transfer for Person Re-Identification
    Zhou, Qin
    Fan, Heng
    Zheng, Shibao
    Su, Hang
    Li, Xinzhe
    Wu, Shuang
    Ling, Haibin
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7599 - 7606
  • [27] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [28] Rethinking Sampling Strategies for Unsupervised Person Re-Identification
    Han, Xumeng
    Yu, Xuehui
    Li, Guorong
    Zhao, Jian
    Pan, Gang
    Ye, Qixiang
    Jiao, Jianbin
    Han, Zhenjun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 29 - 42
  • [29] Unsupervised Person Re-identification by Soft Multilabel Learning
    Yu, Hong-Xing
    Zheng, Wei-Shi
    Wu, Ancong
    Guo, Xiaowei
    Gong, Shaogang
    Lai, Jian-Huang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2143 - 2152
  • [30] Adaptive Label Allocation for Unsupervised Person Re-Identification
    Song, Yihu
    Liu, Shuaishi
    Yu, Siyang
    Zhou, Siyu
    ELECTRONICS, 2022, 11 (05)