Computing tensor generalized inverses via specialization and rationalization

被引:0
|
作者
Predrag S. Stanimirović
J. Rafael Sendra
Ratikanta Behera
Jajati Keshari Sahoo
Dijana Mosić
Juana Sendra
Alberto Lastra
机构
[1] Faculty of Science and Mathematics,Department of Mathematics
[2] University of Niš,Department of Mathematics
[3] Universidad de Alcalá,Dpto. Matemática Aplicada a las TIC
[4] Dpto. Física y Matemáticas,undefined
[5] Alcalá de Henares,undefined
[6] University of Central Florida,undefined
[7] Birla Institute of Technology and Science Pilani-K.K. Birla Goa Campus,undefined
[8] Universidad Politécnica de Madrid,undefined
关键词
Tensor; Einstein product; Tensors of functions; Outer inverse; Meromorphic functions; Symbolic computation; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notion of outer generalized inverses, with predefined range and null space, of tensors with rational function entries equipped with the Einstein product over an arbitrary field, of characteristic zero, with or without involution. We assume that the involved tensor entries are rational functions of unassigned variables or rational expressions of functional entries. The research investigates the replacements in two stages. The lower-stage replacements assume replacements of unknown variables by constant values from the field. The higher-order stage assumes replacements of functional entries by unknown variables. This approach enables the calculation on tensors over meromorphic functions to be simplified by analogous calculations on matrices whose elements are rational expressions of variables. In general, the derived algorithms permit symbolic computation of various generalized inverses which belong to the class of outer generalized inverses, with prescribed range and null space, over an arbitrary field of characteristic zero. More precisely, we focus on a few algorithms for symbolic computation of outer inverses of matrices whose entries are elements of a field of characteristic zero or a field of meromorphic functions in one complex variable over a connected open subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}. Illustrative numerical results validate the theoretical results.
引用
收藏
相关论文
共 50 条
  • [21] Iterative methods for computing generalized inverses and splittings of operators
    Nacevska, Biljana
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 186 - 188
  • [22] Computing generalized inverses using LU factorization of matrix product
    Stanimirovic, Predrag S.
    Tasic, Milan B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (12) : 1865 - 1878
  • [23] Iterative methods for computing generalized inverses related with optimization methods
    Djordjevic, DS
    Stanimirovic, PS
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 : 257 - 272
  • [24] Generalized Inverse Tensor ε-algorithom for Computing Tensor Exponential Function
    Gu C.-Q.
    Tang P.-F.
    Chen Z.-B.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (04): : 744 - 751
  • [25] ON HERMITIAN GENERALIZED INVERSES AND POSITIVE SEMIDEFINITE GENERALIZED INVERSES
    Liu, Xifu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (04): : 443 - 459
  • [26] On Hermitian generalized inverses and positive semidefinite generalized inverses
    Xifu Liu
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 443 - 459
  • [27] Generalized inverses of Boolean tensors via the Einstein product
    Behera, Ratikanta
    Sahoo, Jajati Keshari
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (03): : 531 - 556
  • [28] Generalized inverses of tensors via a general product of tensors
    Lizhu Sun
    Baodong Zheng
    Yimin Wei
    Changjiang Bu
    Frontiers of Mathematics in China, 2018, 13 : 893 - 911
  • [29] Generalized inverses of tensors via a general product of tensors
    Sun, Lizhu
    Zheng, Baodong
    Wei, Yimin
    Bu, Changjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (04) : 893 - 911
  • [30] Noda iteration for computing generalized tensor eigenpairs
    Ma, Wanli
    Ding, Weiyang
    Wei, Yimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 432