Computing tensor generalized inverses via specialization and rationalization

被引:0
|
作者
Predrag S. Stanimirović
J. Rafael Sendra
Ratikanta Behera
Jajati Keshari Sahoo
Dijana Mosić
Juana Sendra
Alberto Lastra
机构
[1] Faculty of Science and Mathematics,Department of Mathematics
[2] University of Niš,Department of Mathematics
[3] Universidad de Alcalá,Dpto. Matemática Aplicada a las TIC
[4] Dpto. Física y Matemáticas,undefined
[5] Alcalá de Henares,undefined
[6] University of Central Florida,undefined
[7] Birla Institute of Technology and Science Pilani-K.K. Birla Goa Campus,undefined
[8] Universidad Politécnica de Madrid,undefined
关键词
Tensor; Einstein product; Tensors of functions; Outer inverse; Meromorphic functions; Symbolic computation; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notion of outer generalized inverses, with predefined range and null space, of tensors with rational function entries equipped with the Einstein product over an arbitrary field, of characteristic zero, with or without involution. We assume that the involved tensor entries are rational functions of unassigned variables or rational expressions of functional entries. The research investigates the replacements in two stages. The lower-stage replacements assume replacements of unknown variables by constant values from the field. The higher-order stage assumes replacements of functional entries by unknown variables. This approach enables the calculation on tensors over meromorphic functions to be simplified by analogous calculations on matrices whose elements are rational expressions of variables. In general, the derived algorithms permit symbolic computation of various generalized inverses which belong to the class of outer generalized inverses, with prescribed range and null space, over an arbitrary field of characteristic zero. More precisely, we focus on a few algorithms for symbolic computation of outer inverses of matrices whose entries are elements of a field of characteristic zero or a field of meromorphic functions in one complex variable over a connected open subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}. Illustrative numerical results validate the theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] Computing tensor generalized inverses via specialization and rationalization
    Stanimirovic, Predrag S.
    Sendra, J. Rafael
    Behera, Ratikanta
    Sahoo, Jajati Keshari
    Mosic, Dijana
    Sendra, Juana
    Lastra, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [2] Computing Tensor Generalized Bilateral Inverses
    Behera, Ratikanta
    Sahoo, Jajati Keshari
    Stanimirovic, Predrag S.
    Stupina, Alena
    Stupin, Artem
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [3] ON COMPUTING GENERALIZED INVERSES
    TEWARSON, RP
    COMPUTING, 1969, 4 (02) : 139 - &
  • [4] The expressions of the generalized inverses of the block tensor via the C-Product
    Jin, Hongwei
    He, Mengyu
    Wang, Yuzhen
    FILOMAT, 2023, 37 (26) : 8909 - 8926
  • [5] On computing sparse generalized inverses
    Ponte, Gabriel
    Fampa, Marcia
    Lee, Jon
    Xu, Luze
    OPERATIONS RESEARCH LETTERS, 2024, 52
  • [6] ITERATIVE METHOD FOR COMPUTING GENERALIZED INVERSES
    TEWARSON, RP
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1971, 3 (01) : 65 - &
  • [7] AN IMBEDDING METHOD FOR COMPUTING THE GENERALIZED INVERSES
    WANG, GR
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (04): : 353 - 362
  • [8] Iterative methods for computing generalized inverses
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 101 - 104
  • [9] Computing determinantal representation of generalized inverses
    Stanimirović, Predrag S.
    Tasić, Milan B.
    Journal of Applied Mathematics and Computing, 2002, 9 (02) : 349 - 359
  • [10] Computing determinantal representation of generalized inverses
    Predrag S. Stanimirović
    Milan B. Tasić
    Journal of Applied Mathematics and Computing, 2002, 9 (2) : 349 - 359