Far-from-equilibrium quantum many-body dynamics

被引:0
|
作者
Thomas Gasenzer
Stefan Keßler
Jan M. Pawlowski
机构
[1] Universität Heidelberg,Institut für Theoretische Physik
[2] GSI Helmholtzzentrum für Schwerionenforschung GmbH,ExtreMe Matter Institute EMMI
[3] Universität Erlangen-Nürnberg,Institut für Theoretische Physik
来源
关键词
Dynamic Equation; Time Argument; Initial Density Matrix; Bare Vertex; Close Time Path;
D O I
暂无
中图分类号
学科分类号
摘要
A theory of real-time quantum many-body dynamics is evaluated in detail. It is based on a generating functional of correlation functions where the closed time contour extends only to a given time. Expanding the contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time-evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behavior of non-equilibrium time evolution. For the specific case of a bosonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document}-component φ4-theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/\mathcal{N}$\end{document} expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.
引用
收藏
页码:423 / 443
页数:20
相关论文
共 50 条
  • [31] Many-body wavefunctions for quantum impurities out of equilibrium
    Culver, Adrian B.
    Andrei, Natan
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [32] Complexity of controlling quantum many-body dynamics
    Caneva, T.
    Silva, A.
    Fazio, R.
    Lloyd, S.
    Calarco, T.
    Montangero, S.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [33] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [34] Nontrivial damping of quantum many-body dynamics
    Heitmann, Tjark
    Richter, Jonas
    Gemmer, Jochen
    Steinigeweg, Robin
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [35] QUANTUM SIMULATION OF SIMPLE MANY-BODY DYNAMICS
    Fan, Yale
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (05)
  • [36] Ruelle resonances in quantum many-body dynamics
    Prosen, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : L737 - L743
  • [37] Engineering many-body quantum dynamics by disorder
    Buonsante, Pierfrancesco
    Wimberger, Sandro
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [38] Quantum Many-Body Dynamics in Optomechanical Arrays
    Ludwig, Max
    Marquardt, Florian
    PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [39] Stroboscopic observation of quantum many-body dynamics
    Kessler, Stefan
    Holzner, Andreas
    McCulloch, Ian P.
    von Delft, Jan
    Marquardt, Florian
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [40] Entanglement dynamics in quantum many-body systems
    Ho, Wen Wei
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 95 (09)