Accurate SVDs of weakly diagonally dominant M-matrices

被引:0
|
作者
James Demmel
Plamen Koev
机构
[1] University of California,Computer Science Division and Mathematics Dept.
[2] Massachusetts Institute of Technology,Mathematics Dept.
来源
Numerische Mathematik | 2004年 / 98卷
关键词
Relative Accuracy; High Relative Accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new O(n3) algorithm which computes the SVD of a weakly diagonally dominant M-matrix to high relative accuracy. The algorithm takes as an input the offdiagonal entries of the matrix and its row sums.
引用
收藏
页码:99 / 104
页数:5
相关论文
共 50 条
  • [21] Subdirect sums of weakly chained diagonally dominant matrices
    Li, Chaoqian
    Ma, Ruidan
    Liu, Qilong
    Li, Yaotang
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1220 - 1231
  • [22] COMPUTING ACCURATE EIGENSYSTEMS OF SCALED DIAGONALLY DOMINANT MATRICES
    BARLOW, J
    DEMMEL, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) : 762 - 791
  • [23] DIAGONALLY DOMINANT MATRICES
    FIEDLER, M
    PTAK, V
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1967, 17 (03) : 420 - &
  • [24] Inequalities for M-matrices and inverse M-matrices
    Chen, Shencan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 610 - 618
  • [25] CLASSES OF PRODUCTS OF M-MATRICES AND INVERSE M-MATRICES
    FIEDLER, M
    MARKHAM, TL
    NEUMANN, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 52-3 (JUL) : 265 - 287
  • [26] The completion problem for M-matrices and inverse M-matrices
    Johnson, CR
    Smith, RL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 243 : 655 - 667
  • [27] Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices
    Froilán M. Dopico
    Plamen Koev
    Numerische Mathematik, 2011, 119 : 337 - 371
  • [28] Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices
    Dopico, Froilan M.
    Koev, Plamen
    NUMERISCHE MATHEMATIK, 2011, 119 (02) : 337 - 371
  • [29] On functions that preserve M-matrices and inverse M-matrices
    Bapat, RB
    Catral, M
    Neumann, M
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (03): : 193 - 201
  • [30] INEQUALITIES FOR DIAGONALLY DOMINANT MATRICES
    Gupta, Vinayak
    Lather, Gargi
    Balaji, R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 647 - 658