Weighted variable exponent Sobolev estimates for elliptic equations with non-standard growth and measure data

被引:0
|
作者
The Anh Bui
Xuan Thinh Duong
机构
[1] Macquarie University,Department of Mathematics
关键词
Nonlinear ; (; )-Laplacian type equation; Measure data; Reifenberg domain; Weighted generalized Lebesgue spaces; 35B65; 35J60; 35J99;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following nonlinear elliptic equation of p(x)-Laplacian type with nonstandard growth diva(Du,x)=μinΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm{div}a(Du, x)=\mu &{}\quad \text {in} \quad \Omega ,\\ u=0 &{} \quad \text {on} \quad \partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a Reifenberg domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a Radon measure defined on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with finite total mass and the nonlinearity a:Rn×Rn→Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a: \mathbb {R}^n\times \mathbb {R}^n\rightarrow \mathbb {R}^n$$\end{document} is modeled upon the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian. We prove the estimates on weighted variable exponent Lebesgue spaces for gradients of solutions to this equation in terms of Muckenhoupt–Wheeden type estimates. As a consequence, we obtain some new results such as the weighted Lq-Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q-L^r$$\end{document} regularity (with constants q<r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q < r$$\end{document}) and estimates on Morrey spaces for gradients of the solutions to this non-linear equation.
引用
收藏
相关论文
共 50 条