Weighted Lq(.)-estimates for the nonlinear parabolic equations with non-standard growth

被引:3
|
作者
Jiao, Yong [1 ]
Saibi, Khedoudj [1 ]
Zhang, Chao [2 ,3 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410075, Peoples R China
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
关键词
Nonlinear parabolic equation; p(x; t)-Laplacian; Variable exponent; Weighted Calderon-Zygmund type estimate; LEBESGUE SPACES; ELLIPTIC-EQUATIONS; OPERATORS; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a global Calderon-Zygmund type estimate for the nonlinear parabolic equation in divergence form with variable exponent growth. The weighted L-q(.)-estimates are proved under some precise conditions on the variable exponent, the nonlinearity and the boundary of the domain. Our results extend the existing regularity estimates in variable Lebesgue spaces to the weighted case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条