Consider the NP-hard problem of, given a simple graph G, to find a series-parallel subgraph of G with the maximum number of edges. The algorithm that, given a connected graph G, outputs a spanning tree of G, is a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{1}{2}$\end{document}-approximation. Indeed, if n is the number of vertices in G, any spanning tree in G has n−1 edges and any series-parallel graph on n vertices has at most 2n−3 edges. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{7}{12}$\end{document}-approximation for this problem and results showing the limits of our approach.
机构:
Graduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, JapanGraduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, Japan
Zhou, Xiao
Nishizeki, Takao
论文数: 0引用数: 0
h-index: 0
机构:
Graduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, JapanGraduate School of Information Sciences, Tohoku University, Aoba-yama 05, Sendai 980-8579, Japan