Efficient classes of estimators in stratified random sampling

被引:0
|
作者
Ramkrishna S. Solanki
Housila P. Singh
机构
[1] Vikram University,School of Studies in Statistics
来源
Statistical Papers | 2015年 / 56卷
关键词
Study variable; Auxiliary variable; Bias; Mean square error; Stratified random sampling; 62D05;
D O I
暂无
中图分类号
学科分类号
摘要
This article suggests two generalized classes of estimators of population mean using auxiliary information in stratified random sampling. The properties of the suggested classes are derived and asymptotic optimum estimator in each class is identified with its properties. The large numbers of known estimators are members of the suggested classes such as usual unbiased estimator, usual combined ratio estimator (Hansen et al., Am Stat Assoc 41:173–189, 1946), usual combined product estimator (Kaur, Biom J 27(1):101–105, 1985), and estimators /classes of estimators due to Kaur (Biom J 26(7):749–753, 1984, Biom J 27(1):101–105, 1985), Diana (Statistica 53(1):59–66, 1993), Kadilar and Cingi (Biom J 45(2):218–225, 2003, Commun Stat Theory Methods 34(3):597–602, 2005), Shabbir and Gupta (Am J Math Manag Sci 25(3–4):293–311, 2005), Singh and Vishwakarma (Metodologia de Encuestas, Monografico: Incidencias en el trabjo de Campo 7(1):32–40, 2006a, Stat Trans 7(6):1311–1325, 2006b), Singh et al. (Stat Pap 49(1):37–58, 2008, SORT 34(2):157–180, 2010), Tailor (Data Sci Jour 8:182–189, 2009), Koyuncu and Kadilar (J Stat Plan Inference 139(8):2552–2558, 2009, Pak J Stat 26(2):427–443, 2010b) and Tailor et al. (Commun Korea Stat Soc 18(1):111–118, 2011). The theoretical and empirical studies are carried out and findings are encouraging and support the soundness of the present study.
引用
收藏
页码:83 / 103
页数:20
相关论文
共 50 条
  • [31] THE GENERAL CLASSES OF ESTIMATORS FOR POPULATION MEAN UNDER STRATIFIED TWO PHASE RANDOM SAMPLING IN THE PRESENCE OF NON-RESPONSE
    Singh, Rajesh
    Khare, Supriya
    Khare, B. B.
    Jha, P. S.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02): : 557 - 565
  • [32] New classes of difference cum-ratio-type exponential estimators for a finite population variance in stratified random sampling
    Daraz, Umer
    Wu, Jinbiao
    Alomair, Mohammed Ahmed
    Aldoghan, Luai Abdulla
    HELIYON, 2024, 10 (13)
  • [33] ESTIMATORS USING WEIGHTS BASED ON STRATUM STATISTICS IN STRATIFIED RANDOM SAMPLING
    Jitthavech, Jirawan
    Lorchirachoonkul, Vichit
    ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 44 (02) : 87 - 116
  • [34] Some Improved Classes of Estimators in Stratified Sampling Using Bivariate Auxiliary Information
    Bhushan, Shashi
    Kumar, Anoop
    Onyango, Ronald
    Singh, Saurabh
    JOURNAL OF PROBABILITY AND STATISTICS, 2022, 2022
  • [35] CLASSES OF ESTIMATORS FOR RATIO OF TWO POPULATION MEANS USING AUXILIARY CHARACTER IN STRATIFIED RANDOM SAMPLING IN THE PRESENCE OF NON-RESPONSE
    Khare, B. B.
    Mishra, Manish
    Singh, Sachin
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 (02): : 759 - 768
  • [36] Quantiles naive, ratio and difference estimators for efficient stratified sampling designs
    Rochani, Haresh
    Samawi, Hani
    Zhang, Xinyan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 542 - 567
  • [37] Separate Ratio-type Estimators of Population Mean in Stratified Random Sampling
    Tailor, Rajesh
    Lone, Hilal A.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (01) : 223 - 233
  • [38] Estimation of Coefficient of Variation Using Calibrated Estimators in Double Stratified Random Sampling
    Shahzad, Usman
    Ahmad, Ishfaq
    Garcia-Luengo, Amelia, V
    Zaman, Tolga
    Al-Noor, Nadia H.
    Kumar, Anoop
    MATHEMATICS, 2023, 11 (01)
  • [39] Hartley-Ross type unbiased estimators using the stratified random sampling
    Cekim, Hatice Oncel
    Kadilar, Cem
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 293 - 302
  • [40] Improved Exponential Type Estimators for Finite Population Mean in Stratified Random Sampling
    Koyuncu, Nursel
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2016, 12 (03) : 429 - 441