Medical image fusion with deep neural networks

被引:4
|
作者
Liang, Nannan [1 ]
机构
[1] Suzhou Univ, Sch Informat & Engn, Suzhou 234000, Peoples R China
关键词
SHEARLET TRANSFORM; EDGE INFORMATION; FRAMEWORK;
D O I
10.1038/s41598-024-58665-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Medical image fusion aims to fuse multiple images from a single or multiple imaging modes to enhance their corresponding clinical applications in diagnosing and evaluating medical problems, a trend that has attracted increasing attention. However, most recent medical image fusion methods require prior knowledge, making it difficult to select image features. In this paper, we propose a novel deep medical image fusion method based on a deep convolutional neural network (DCNN) for directly learning image features from original images. Specifically, source images are first decomposed by low rank representation to obtain the principal and salient components, respectively. Following that, the deep features are extracted from the decomposed principal components via DCNN and fused by a weighted-average rule. Then, considering the complementary between the salient components obtained by the low rank representation, a simple yet effective sum rule is designed to fuse the salient components. Finally, the fused result is obtained by reconstructing the principal and salient components. The experimental results demonstrate that the proposed method outperforms several state-of-the-art medical image fusion approaches in terms of both objective indices and visual quality.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Literature review: efficient deep neural networks techniques for medical image analysis
    Abdou, Mohamed A.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 5791 - 5812
  • [32] Transparency of deep neural networks for medical image analysis: A review of interpretability methods
    Salahuddin, Zohaib
    Woodruff, Henry C.
    Chatterjee, Avishek
    Lambin, Philippe
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [33] Annotation of enhanced radiographs for medical image retrieval with deep convolutional neural networks
    Pelka, Obioma
    Nensa, Felix
    Friedrich, Christoph M.
    PLOS ONE, 2018, 13 (11):
  • [34] MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
    Dominik Müller
    Frank Kramer
    BMC Medical Imaging, 21
  • [35] Medical Image Classification: A Comparison of Deep Pre-trained Neural Networks
    Alebiosu, David Olayemi
    Muhammad, Fermi Pasha
    2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 306 - 310
  • [36] Deep Neural Networks for Medical Images
    Elaalyani, Issam
    Erradi, Mohammed
    Networked Systems, NETYS 2016, 2016, 9944 : 382 - 382
  • [37] Image disambiguation with deep neural networks
    DeGuchy, Omar
    Ho, Alex
    Marcia, Roummel F.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [38] Medical Image Fusion Using Unified Image Fusion Convolutional Neural Network
    Balasubramaniam, S.
    Chirchi, Vanajaroselin
    Sivakumar, T. A.
    Senthilvel, P. Gururama
    Duraimutharasan, N.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [39] FusionCNN: a remote sensing image fusion algorithm based on deep convolutional neural networks
    Fajie Ye
    Xiongfei Li
    Xiaoli Zhang
    Multimedia Tools and Applications, 2019, 78 : 14683 - 14703
  • [40] Fusion of Hyperspectral Image and LiDAR Data and Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,