In this paper, the authors provide a brief introduction of the path-dependent partial di.erential equations (PDEs for short) in the space of continuous paths, where the path derivatives are in the Dupire (rather than Fréchet) sense. They present the connections between Wiener expectation, backward stochastic di.erential equations (BSDEs for short) and path-dependent PDEs. They also consider the well-posedness of path-dependent PDEs, including classical solutions, Sobolev solutions and viscosity solutions.
机构:
Univ Evry Val dEssonne, Lab Math & Modelisat Evry LaMME, 23 Blvd France, F-91037 Evry, FranceUniv Evry Val dEssonne, Lab Math & Modelisat Evry LaMME, 23 Blvd France, F-91037 Evry, France
Chevalier, Etienne
Vath, Vathana Ly
论文数: 0引用数: 0
h-index: 0
机构:
Univ Evry Val dEssonne, Lab Math & Modelisat Evry LaMME, 23 Blvd France, F-91037 Evry, France
ENSIIE, 1 Sq Resistance, F-91000 Evry, FranceUniv Evry Val dEssonne, Lab Math & Modelisat Evry LaMME, 23 Blvd France, F-91037 Evry, France