Graph attention neural network for water network partitioning

被引:0
|
作者
Kezhen Rong
Minglei Fu
Yangyang Huang
Ming Zhang
Lejin Zheng
Jianfeng Zheng
Miklas Scholz
Zaher Mundher Yaseen
机构
[1] Zhejiang University of Technology,College of Sciences
[2] Zhejiang University of Technology,College of Information Engineering
[3] Hangzhou Laison Technology Co.,Directorate of Engineering the Future, School of Science, Engineering and Environment
[4] Ltd,Department of Civil Engineering Science, School of Civil Engineering and the Built Environment
[5] The University of Salford,Department of Town Planning, Engineering Networks and Systems
[6] University of Johannesburg,Civil and Environmental Engineering Department
[7] South Ural State University,undefined
[8] King Fahd University of Petroleum & Minerals,undefined
来源
Applied Water Science | 2023年 / 13卷
关键词
Deep learning; Unsupervised clustering; Graph attention; Water network partitioning;
D O I
暂无
中图分类号
学科分类号
摘要
Partitioning a water distribution network into several district metered areas is beneficial for its management. Partitioning a network according to its node features and connections remains a challenge. A recent study has realized water network partitioning based on node features or pipe connections individually. This study proposes an unsupervised clustering method for nodes based on a graph neural network, which uses graph attention technology to update node features based on the connections and a neural network to cluster nodes. The similarity between nodes located in each area and the balance of the total water demand between areas are optimized, and the importance of the boundary pipes is calculated to determine the installation position of flowmeters and valves. Three water distribution networks with different structures and sizes are used to verify the proposed model. The results show that the average location differences (LocDiffs) within the areas of the three networks completed by partitioning are 0.12, 0.07, and 0.06, and the total demand differences (DemDiffs) between areas are 0.13, 0.27, and 0.29, respectively. The LocDiff and DemDiff of the proposed method decreased by 6% and 55%, respectively, when compared to the traditional clustering method. Additionally, the proposed method for calculating the importance of boundaries provides an objective basis for boundary closure. When the same number of boundaries are closed, the comprehensive impact of the proposed method on the pipe network decreases by 17.1%. The proposed method can be used in practical applications because it ensures a highly reliable and interpretive water distribution network partitioning method.
引用
收藏
相关论文
共 50 条
  • [21] An integrated fuzzy neural supervision and attention-based graph neural network for improving network clustering
    Vo, Tham
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (33): : 24015 - 24035
  • [22] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [23] Road Network Intelligent Selection Method Based on Heterogeneous Graph Attention Neural Network
    Zheng, Haohua
    Zhang, Jianchen
    Li, Heying
    Wang, Guangxia
    Guo, Jianzhong
    Wang, Jiayao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (09)
  • [24] Construction of Cultural Heritage Knowledge Graph Based on Graph Attention Neural Network
    Wang, Yi
    Liu, Jun
    Wang, Weiwei
    Chen, Jian
    Yang, Xiaoyan
    Sang, Lijuan
    Wen, Zhiqiang
    Peng, Qizhao
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [25] Attention-Based Graph Neural Network for News Recommendation
    Ji, Zhenyan
    Wu, Mengdan
    Liu, Jirui
    Armendariz Inigo, Jose Enrique
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [26] Graph neural network with self-attention for material discovery
    Chen, Xuesi
    Jiang, Hantong
    Lin, Xuanjie
    Ren, Yongsheng
    Wu, Congzhong
    Zhan, Shu
    Ma, Wenhui
    MOLECULAR PHYSICS, 2023, 121 (04)
  • [27] Enhancing hyperspectral image classification with graph attention neural network
    Rathakrishnan, Niruban
    Raja, Deepa
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [28] Attention based dynamic graph neural network for asset pricing
    Uddin, Ajim
    Tao, Xinyuan
    Yu, Dantong
    GLOBAL FINANCE JOURNAL, 2023, 58
  • [29] Dual separated attention-based graph neural network
    Shen, Xiao
    Choi, Kup-Sze
    Zhou, Xi
    NEUROCOMPUTING, 2024, 599
  • [30] Residual Convolutional Graph Neural Network with Subgraph Attention Pooling
    Yutai Duan
    Jianming Wang
    Haoran Ma
    Yukuan Sun
    TsinghuaScienceandTechnology, 2022, 27 (04) : 653 - 663