The Balanced Pseudocomplemented Ockham Algebras with the Strong Endomorphism Kernel Property

被引:0
|
作者
Jie Fang
机构
[1] Guangdong Polytechnic Normal University,School of Mathematics and System Science
来源
Studia Logica | 2019年 / 107卷
关键词
Strong endomorphism kernel property; Ockham algebra; Pseudocomplementation;
D O I
暂无
中图分类号
学科分类号
摘要
An endomorphism on an algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is said to be strong if it is compatible with every congruence on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}; and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is said to have the strong endomorphism kernel property if every congruence on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}, other than the universal congruence, is the kernel of a strong endomorphism on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. Here we characterise the structure of Ockham algebras with balanced pseudocomplementation those that have this property via Priestley duality.
引用
收藏
页码:1261 / 1277
页数:16
相关论文
共 50 条
  • [21] Symmetric Extended MS-algebras with the Strong Endomorphism Kernel Property
    Jie Fang
    Acta Mathematica Sinica, English Series, 2022, 38 : 1447 - 1458
  • [22] Symmetric Extended MS-algebras with the Strong Endomorphism Kernel Property
    Jie FANG
    Acta Mathematica Sinica,English Series, 2022, (08) : 1447 - 1458
  • [23] PSEUDOCOMPLEMENTED AND ALMOST PSEUDOCOMPLEMENTED OCKHAM ALGEBRAS - PRINCIPAL CONGRUENCES
    SANKAPPANAVAR, HP
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (03): : 229 - 236
  • [24] Semilattices with the strong endomorphism kernel property
    Jie Fang
    Zhong-Ju Sun
    Algebra universalis, 2013, 70 : 393 - 401
  • [25] Semilattices with the strong endomorphism kernel property
    Fang, Jie
    Sun, Zhong-Ju
    ALGEBRA UNIVERSALIS, 2013, 70 (04) : 393 - 401
  • [26] The strong endomorphism kernel property for modular p-algebras and for distributive lattices
    Jaroslav Guričan
    Miroslav Ploščica
    Algebra universalis, 2016, 75 : 243 - 255
  • [27] The strong endomorphism kernel property for modular p-algebras and for distributive lattices
    Gurican, Jaroslav
    Ploscica, Miroslav
    ALGEBRA UNIVERSALIS, 2016, 75 (02) : 243 - 255
  • [28] STRONG ENDOMORPHISM KERNEL PROPERTY FOR FINITE BROUWERIAN SEMILATTICES AND RELATIVE STONE ALGEBRAS
    Gurican, Jaroslav
    Ghumashyan, Heghine
    MATHEMATICA BOHEMICA, 2024, 149 (01): : 13 - 25
  • [29] THE ENDOMORPHISM KERNEL PROPERTY IN FINITE STONE ALGEBRAS
    Gaitan, Hernando
    Jairo Cortes, Yhon
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 14 (01): : 51 - 64
  • [30] On the Dual Space of a Balanced Pseudocomplemented Ockham Algebra
    Fang, Jie
    Huang, Chunhua
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (02) : 211 - 228