Polygons and iteratively regularizing affine transformations

被引:3
|
作者
Roeschel O. [1 ]
机构
[1] Institute of Geometry, NAWI Graz, Graz University of Technology, Kopernikusgasse 24, Graz
关键词
Affine Iterations; Affine Regularization; Regular n-gons;
D O I
10.1007/s13366-016-0313-7
中图分类号
学科分类号
摘要
We start with a generic planar n-gon Q0 with veritices qj , 0 (j= 0 , ⋯ , n- 1) and fixed reals u, v, w∈ R with u+ v+ w= 1. We iteratively define n-gons Qk of generation k∈ N with vertices qj , k (j= 0 , ⋯ , n- 1) via qj,k:=uqj,k-1+vqj+1,k-1+wqj+2,k-1. We are able to show that this affine iteration process for general input data generally regularizes the polygons in the following sense: There is a series of affine mappings βk such that the sums Δ k of the squared distances between the vertices of βk(Qk) and the respective vertices of a given regular prototype polygon P form a null series for k⟶ ∞. © 2016, The Author(s).
引用
收藏
页码:69 / 79
页数:10
相关论文
共 50 条
  • [21] Square-banded polygons and affine regularity
    DeTemple, D
    Hudelson, M
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (02): : 100 - 114
  • [22] Gluing Affine 2-Manifolds with Polygons
    Oliver Baues
    Geometriae Dedicata, 1999, 75 : 33 - 56
  • [23] Learning affine transformations
    Bebis, G
    Georgiopoulos, M
    Lobo, ND
    Shah, M
    PATTERN RECOGNITION, 1999, 32 (10) : 1783 - 1799
  • [24] Affine Transformations in Bundles
    Sultanov A.Y.
    Monakhova O.A.
    Journal of Mathematical Sciences, 2020, 245 (5) : 601 - 643
  • [25] Affine transformations on symbols
    Paycha, Sylvie
    ANALYSIS, GEOMETRY AND QUANTUM FIELD THEORY, 2012, 584 : 199 - 222
  • [26] EXTREME AFFINE TRANSFORMATIONS
    GORINI, V
    SUDARSHAN, ECG
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 46 (01) : 43 - 52
  • [27] Reversibility of affine transformations
    Gongopadhyay, Krishnendu
    Lohan, Tejbir
    Maity, Chandan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (04) : 1217 - 1228
  • [28] CYCLIC TRANSFORMATIONS OF POLYGONS AND GENERALIZED INVERSE
    DAVIS, PJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (04): : 756 - 770
  • [29] Convexification of Polygons by Length Preserving Transformations
    Dumitrescu, Adrian
    Hilscher, Evan
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 113 - 114
  • [30] Affine Properties of Convex Equal-Area Polygons
    Marcos Craizer
    Ralph C. Teixeira
    Moacyr A. H. B. da Silva
    Discrete & Computational Geometry, 2012, 48 : 580 - 595