Polygons and iteratively regularizing affine transformations

被引:3
|
作者
Roeschel O. [1 ]
机构
[1] Institute of Geometry, NAWI Graz, Graz University of Technology, Kopernikusgasse 24, Graz
关键词
Affine Iterations; Affine Regularization; Regular n-gons;
D O I
10.1007/s13366-016-0313-7
中图分类号
学科分类号
摘要
We start with a generic planar n-gon Q0 with veritices qj , 0 (j= 0 , ⋯ , n- 1) and fixed reals u, v, w∈ R with u+ v+ w= 1. We iteratively define n-gons Qk of generation k∈ N with vertices qj , k (j= 0 , ⋯ , n- 1) via qj,k:=uqj,k-1+vqj+1,k-1+wqj+2,k-1. We are able to show that this affine iteration process for general input data generally regularizes the polygons in the following sense: There is a series of affine mappings βk such that the sums Δ k of the squared distances between the vertices of βk(Qk) and the respective vertices of a given regular prototype polygon P form a null series for k⟶ ∞. © 2016, The Author(s).
引用
收藏
页码:69 / 79
页数:10
相关论文
共 50 条
  • [1] Regularizing transformations of polygons
    Lang J.
    Mick S.
    Röschel O.
    Journal of Geometry, 2017, 108 (2) : 791 - 801
  • [2] Affine invariants of generalized polygons and matching under affine transformations
    Chavez, Edgar
    Chavez Caliz, Ana C.
    Lopez-Lopez, Jorge L.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 58 : 60 - 69
  • [3] Iteratively Regularizing Hyperspectral and Multispectral Image Fusion With Framelets
    Shen, Xiangfei
    Chen, Lihui
    Liu, Haijun
    Zhou, Xichuan
    Bao, Wenxing
    Tian, Ling
    Vivione, Gemine
    Chanussot, Jocelyn
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5331 - 5346
  • [4] Affine regular polygons
    Szabo, Sandor
    ELEMENTE DER MATHEMATIK, 2005, 60 (04) : 137 - 147
  • [5] REGULARIZING TRANSFORMATIONS OF JACOBIAN INTEGRAL
    SZEBEHELY, V
    PIERCE, DA
    ASTRONOMICAL JOURNAL, 1966, 71 (09): : 886 - +
  • [6] Affine extensions of generalized polygons
    van Bon, J
    Cuypers, H
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (06) : 571 - 588
  • [7] Affine invariants of convex polygons
    Flusser, J
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (09) : 1117 - 1118
  • [8] REGULAR POLYGONS IN AFFINE SPACES
    SUNDAY, JG
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1975, 30 (APR) : 301 - 329
  • [9] Global regularizing flows with topology preservation for active contours and polygons
    Sundaramoorthi, Ganesh
    Yezzi, Anthony
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (03) : 803 - 812
  • [10] Poly-GAN: Regularizing Polygons with Generative Adversarial Networks
    Niroshan, Lasith
    Carswell, James D.
    WEB AND WIRELESS GEOGRAPHICAL INFORMATION SYSTEMS, W2GIS 2023, 2023, 13912 : 179 - 193