Uniform Convergence Rate of Estimators of Autocovariances in Partly Linear Regression Models with Correlated Errors

被引:0
|
作者
Jin-hong You
Gemai Chen
Min Chen
Xue-lei Jiang
机构
[1] University of Regina,Academy of Mathematics and System Sciences
[2] University of Calgary,undefined
[3] Chinese Academy of Sciences,undefined
关键词
Uniform strong convergence rate; autocovariance and autocorrelation; -spline estimation; correlated error; partly linear regression model; 62J05; 62E20;
D O I
10.1007/s10255-003-0111-5
中图分类号
学科分类号
摘要
Consider the partly linear regression model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ y_{i} = {x}'_{i} \beta + g{\left( {t_{i} } \right)} + \varepsilon _{i} ,\;\;{\kern 1pt} 1 \leqslant i \leqslant n $$\end{document}, where yi’s are responses, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{i} = {\left( {x_{{i1}} ,x_{{i2}} , \cdots ,x_{{ip}} } \right)}^{\prime } \;\;\;{\text{and}}\;\;\;t_{i} \in {\cal T} $$\end{document}are known and nonrandom design points, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\cal T} $$\end{document} is a compact set in the real line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\cal R} $$\end{document}, β = (β1, ··· , βp)' is an unknown parameter vector, g(·) is an unknown function and {εi} is a linear process, i.e.,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon _{i} {\kern 1pt} = {\kern 1pt} {\sum\limits_{j = 0}^\infty {\psi _{j} e_{{i - j}} ,{\kern 1pt} \;\psi _{0} {\kern 1pt} = {\kern 1pt} 1,\;{\kern 1pt} {\sum\limits_{j = 0}^\infty {{\left| {\psi _{j} } \right|} < \infty } }} } $$\end{document} , where ej are i.i.d. random variables with zero mean and variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma ^{2}_{e} $$\end{document}. Drawing upon B-spline estimation of g(·) and least squares estimation of β, we construct estimators of the autocovariances of {εi}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {εi} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process.
引用
收藏
页码:363 / 370
页数:7
相关论文
共 50 条
  • [31] On some two parameter estimators for the linear regression models with correlated predictors: simulation and application
    Khan, Muhammad Shakir
    Ali, Amjad
    Suhail, Muhammad
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [32] RATES OF CONVERGENCE OF M-ESTIMATORS FOR PARTLY LINEAR-MODELS INVOLVING TIME-SERIES
    SHI, PD
    ZHENG, ZG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (05): : 533 - 541
  • [33] The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
    Yao, Yun Bao
    Lue, Yu Tan
    Lu, Chao
    Wang, Wei
    Wang, Xue Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1244 - 1272
  • [34] The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
    Yun Bao Yao
    Yu Tan Lü
    Chao Lu
    Wei Wang
    Xue Jun Wang
    Acta Mathematica Sinica, English Series, 2024, 40 : 1244 - 1272
  • [35] Uniform convergence of convolution estimators for the response density in nonparametric regression
    Schick, Anton
    Wefelmeyer, Wolfgang
    BERNOULLI, 2013, 19 (5B) : 2250 - 2276
  • [36] STRONG CONSISTENCY OF LS ESTIMATORS IN SIMPLE LINEAR EV REGRESSION MODELS WITH WOD ERRORS
    Yi Yanchun
    Chen, Pingyan
    Sung, Soo Hak
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1533 - 1544
  • [37] Convergence Rates of Multivariate Regression Estimators with Errors-In-Variables
    Guo, Huijun
    Liu, Youming
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (12) : 1564 - 1588
  • [38] The Consistency of LSE Estimators in Partial Linear Regression Models under Mixing Random Errors
    Yun Bao YAO
    Yu Tan Lü
    Chao LU
    Wei WANG
    Xue Jun WANG
    Acta Mathematica Sinica,English Series, 2024, (05) : 1244 - 1272
  • [39] Weighted empirical minimum distance estimators in linear errors-in-variables regression models
    Geng, Pei
    Koul, Hira L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 219 : 147 - 174
  • [40] Spline estimation of partially linear regression models for time series with correlated errors
    Liu, Yanping
    Yin, Juliang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (11) : 5522 - 5536