Critical nonhomogeneous fourth-order Schrödinger–Kirchhoff-type equations

被引:0
|
作者
Antônio de Pádua Farias de Souza Filho
机构
[1] Universidade Federal Rural do Semi-Árido,Departamento de Ciências Exatas e Naturais
关键词
Higher-order elliptic equations; Kirchhoff-type equation; Critical exponent; Biharmonic; Compactness; 35J30; 31A30; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the following class of stationary fourth-order Schrödinger–Kirchhoff-type equations: Δ2u-M‖∇u‖22Δu+V(x)u=h(x)|u|q-2u+|u|2∗-2u+g(x)|u|τ-2u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta ^{2} u-M\left( \Vert \nabla u\Vert ^2_2 \right) \Delta u+V(x)u=h(x)|u|^{q-2}u+|u|^{2_*-2}u+ g(x)|u|^{\tau -2}u, ~~x \in \mathbb {R}^{N}, \end{aligned}$$\end{document}where N≥8,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 8,$$\end{document} and 2∗=2NN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_*=\frac{2N}{N-4}$$\end{document} is the critical Sobolev exponent. Under some assumptions on the Kirchhoff function M, the potential V(x) and g(x), by using Ekeland’s Variational Principle and the Mountain Pass Theorem, we obtain the existence of multiple solutions for the above problem. These results are new even for the local case, which corresponds to nonlinear fourth order Schrödinger equations.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [41] Fourth-order finite difference scheme and efficient algorithm for nonlinear fractional Schrödinger equations
    Yan Chang
    Huanzhen Chen
    Advances in Difference Equations, 2020
  • [42] Global and Non-global Solutions for a Class of Damped Fourth-Order Schrödinger Equations
    T. Saanouni
    Mediterranean Journal of Mathematics, 2021, 18
  • [43] A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations
    A. Q. M. Khaliq
    X. Liang
    K. M. Furati
    Numerical Algorithms, 2017, 75 : 147 - 172
  • [44] Infinitely many positive weak solutions for a perturbed fourth-order kirchhoff-type on the whole space
    Tavani, Mohammad Reza Heidari
    Khodabakhshi, Mehdi
    Vaezpour, Seyyed Mansour
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 79 - 88
  • [45] INFINITELY MANY POSITIVE WEAK SOLUTIONS FOR A PERTURBED FOURTH-ORDER KIRCHHOFF-TYPE ON THE WHOLE SPACE
    Tavani, Mohammad Reza Heidari
    Khodabaksi, Mehdi
    Vaezpour, Seyyed Mansour
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 79 - 88
  • [46] Existence and asymptotic behavior of normalized solutions for fourth-order equations of Kirchhoff type
    Han, Tao
    Sun, Hong-Rui
    Jin, Zhen-Feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4687 - 4707
  • [47] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [48] The fourth-order nonlinear Schrödinger limit for quantum Zakharov system
    Yung-Fu Fang
    Chi-Kun Lin
    Jun-Ichi Segata
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [49] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [50] Existence of Nontrivial Solutions to a Critical Fourth-Order Kirchhoff Type Elliptic Equation
    Zhang, Qian
    Han, Yuzhu
    ACTA APPLICANDAE MATHEMATICAE, 2024, 192 (01)