New nonperturbative scales and glueballs in confining supersymmetric gauge theories

被引:0
|
作者
Mohamed M. Anber
Erich Poppitz
机构
[1] Lewis & Clark College,Department of Physics
[2] University of Toronto,Department of Physics
关键词
Nonperturbative Effects; Supersymmetric Effective Theories; Supersymmetric Gauge Theory; Supersymmetry and Duality;
D O I
暂无
中图分类号
学科分类号
摘要
We show that new nonperturbative scales exist in four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 super-Yang-Mills theory compactified on a circle, with an iterated-exponential dependence on the inverse gauge coupling. The lightest states with the quantum numbers of four-dimensional glueballs are nonrelativistic bound states of dual Cartan gluons and superpartners, with binding energy equal to e−e1/g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {e}^{-{e}^{1/{g}^2}} $$\end{document} in units of the confining mass gap. Focusing on SU(2) gauge group, we construct the nonrelativistic effective theory, show that the lightest glueball/glueballino states fill a chiral supermultiplet, and determine their “doubly-nonperturbative” binding energy. The iterated-exponential dependence on the gauge coupling is due to nonperturbative couplings in the long distance theory, λ∼e−1g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \uplambda \sim {e}^{-\frac{1}{g^2}} $$\end{document}, which are responsible for attractive interactions, in turn producing exponentially small, ∼e−1λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sim {e}^{-\frac{1}{\lambda }} $$\end{document}, effects.
引用
收藏
相关论文
共 50 条
  • [41] BIANCHI IDENTITIES FOR SUPERSYMMETRIC GAUGE THEORIES
    SOHNIUS, MF
    NUCLEAR PHYSICS B, 1978, 136 (03) : 461 - 474
  • [42] DECOUPLING IN SUPERSYMMETRIC GAUGE-THEORIES
    CLARK, TE
    LOVE, ST
    PHYSICAL REVIEW D, 1989, 40 (12): : 4117 - 4122
  • [43] Supersymmetric quiver gauge theories on the lattice
    Anosh Joseph
    Journal of High Energy Physics, 2014
  • [44] Supersymmetric gauge theories in twistor space
    Boels, Rutger
    Mason, Lionel
    Skinner, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [45] Wrapping effects in supersymmetric gauge theories
    Fiamberti, Francesco
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (11-12): : 1023 - 1121
  • [46] The Master Space of Supersymmetric Gauge Theories
    Hanany, Amihay
    Zaffaroni, Alberto
    ADVANCES IN HIGH ENERGY PHYSICS, 2010, 2010
  • [47] Supersymmetric quiver gauge theories on the lattice
    Joseph, Anosh
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [48] Solitons, duality, and supersymmetric gauge theories
    Shapere, AD
    SOLITONS: PROPERTIES, DYNAMICS, INTERACTIONS, APPLICATIONS, 2000, : 241 - 251
  • [49] Brane tilings and supersymmetric gauge theories
    Hanany, A.
    Torri, G.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 216 : 270 - 272
  • [50] ANOMALIES IN SUPERSYMMETRIC GAUGE-THEORIES
    GRIGORYAN, GV
    GRIGORYAN, RP
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1981, 33 (02): : 283 - 286