Einstein metrics and complex singularities

被引:0
|
作者
David M.J. Calderbank
Michael A. Singer
机构
[1] University of Edinburgh,School of Mathematics
来源
Inventiones mathematicae | 2004年 / 156卷
关键词
Partial Differential Equation; Scalar Curvature; Real Variable; Betti Number; Isometry Group;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the construction of special metrics on non-compact 4-manifolds which arise as resolutions of complex orbifold singularities. Our study is close in spirit to the construction of the hyperkähler gravitational instantons, but we focus on a different class of singularities. We show that any resolution X of an isolated cyclic quotient singularity admits a complete scalar-flat Kähler metric (which is hyperkähler if and only if KX is trivial), and that if KX is strictly nef, then X also admits a complete (non-Kähler) self-dual Einstein metric of negative scalar curvature. In particular, complete self-dual Einstein metrics are constructed on simply-connected non-compact 4-manifolds with arbitrary second Betti number.
引用
收藏
页码:405 / 443
页数:38
相关论文
共 50 条
  • [41] On Einstein Matsumoto metrics
    Zhang, Xiaoling
    Shen, Yibing
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 15 - 30
  • [42] EINSTEIN-METRICS
    GAO, LZY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 155 - 183
  • [43] On Einstein Matsumoto metrics
    Zhang XiaoLing
    Xia QiaoLing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1517 - 1524
  • [44] On Einstein Matsumoto metrics
    XiaoLing Zhang
    QiaoLing Xia
    Science China Mathematics, 2014, 57 : 1517 - 1524
  • [45] A class of Einstein (α, β)-metrics
    Cheng, Xinyue
    Shen, Zhongmin
    Tian, Yanfang
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) : 221 - 249
  • [46] On Einstein Finsler metrics
    Ulgen, Semail
    Sevim, Esra Sengelen
    Hacinliyan, Irma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (09)
  • [47] Unstable Einstein metrics
    Christoph Böhm
    Mathematische Zeitschrift, 2005, 250 : 279 - 286
  • [48] On homogeneous Einstein (α,β)-metrics
    Yan, Zaili
    Deng, Shaoqiang
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 103 : 20 - 36
  • [49] On Einstein square metrics
    Shen, Zhongmin
    Yu, Changtao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 413 - 424
  • [50] On Einstein Matsumoto metrics
    Rafie-Rad, M.
    Rezaei, B.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 882 - 886