We determine the asymptotic behavior of the lp-norms of the sequence of Taylor coefficients of bn, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{array}{*{20}{c}}
{b(z) = \frac{{z - \lambda }}{{1 - \lambda z}},}&{\left| \lambda \right| < 1,}
\end{array}$$\end{document} is an automorphism of the unit disk, p ∈ [1,∞], and n is large. It is known that in the parameter range p ∈ [1, 2] a sharp upper bound \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\left\| {{b^n}} \right\|_{l_p^A}} \leqslant {c_p}{n^{\tfrac{{2 - p}}{{2p}}}}$$\end{document} holds. In this article we find that this estimate is valid even when p ∈ [1, 4). We prove that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\left\| {{b^n}} \right\|_{l_4^A}} \leqslant {c_4}{\left( {\frac{{\log n}}{n}} \right)^{\tfrac{1}{4}}}$$\end{document} and for p ∈ (4,∞] that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\left\| {{b^n}} \right\|_{l_p^A}} \leqslant {c_p}{n^{\tfrac{{1 - p}}{{3p}}}}.$$\end{document} The upper bounds are shown to be asymptotically sharp as n tends to ∞. As a direct application we prove the sharpness of existing upper estimates on analytic capacities in Beurling–Sobolev spaces. Our investigation is also motivated by a question of J. J. Schäffer about optimal estimates for norms of inverse matrices.
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Szehr, Oleg
Zarouf, Rachid
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, Inst Math Marseille, UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
St Petersburg State Univ, Dept Math & Mech, 28 Univ Ski Pr, St Petersburg 198504, RussiaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria