lp-Norms of Fourier Coefficients of Powers of a Blaschke Factor
被引:6
|
作者:
Szehr, Oleg
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Szehr, Oleg
[1
]
Zarouf, Rachid
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, Inst Math Marseille, UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
St Petersburg State Univ, Dept Math & Mech, 28 Univ Ski Pr, St Petersburg 198504, RussiaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Zarouf, Rachid
[2
,3
]
机构:
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Aix Marseille Univ, Inst Math Marseille, UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[3] St Petersburg State Univ, Dept Math & Mech, 28 Univ Ski Pr, St Petersburg 198504, Russia
We determine the asymptotic behavior of the lp-norms of the sequence of Taylor coefficients of bn, where b(z) = z -. 1 - <overline>.z, |.| < 1, is an automorphism of the unit disk, p. [1,8], and n is large. It is known that in the parameter range p. [1, 2] a sharp upper bound bn lAp = cpn 2-p 2p holds. In this article we find that this estimate is valid even when p. [1, 4). We prove that bn lA4 = c4 log n n 14 and for p. (4,8] that bn lAp = cpn 1-p 3p. The upper bounds are shown to be asymptotically sharp as n tends to 8. As a direct application we prove the sharpness of existing upper estimates on analytic capacities in Beurling-Sobolev spaces. Our investigation is also motivated by a question of J. J. Sch <spacing diaeresis>affer about optimal estimates for norms of inverse matrices.