Stability analysis of the Hindmarsh–Rose neuron under electromagnetic induction

被引:0
|
作者
L. Messee Goulefack
A. Cheage Chamgoue
C. Anteneodo
R. Yamapi
机构
[1] University of Douala,Fundamental Physics Laboratory, Physics of Complex Systems group, Department of Physics, Faculty of Science
[2] University of Ngaoundere,Department of Basic Science, School of Geology and Mining Engineering
[3] Pontifícia Universidade Católica do Rio de Janeiro,Departamento de Física
[4] & National Institute of Science and Technology (INCT) of Complex Systems,undefined
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Hindmarsh–Rose neuron with electromagnetic induction; Linear stability analysis; Bifurcation diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hindmarsh–Rose neuron model modified by taking into account the effect of electromagnetic induction on membrane potential. We study the impact of the magnetic flux on the neuron dynamics, through the analysis of the stability of fixed points. Increasing magnetic flux reduces the number of equilibrium points and favors their stability. Therefore, electromagnetic induction tends to regularize chaotic regimes and to affect regular and quasi-regular ones by reducing the number of spikes or even destroying the oscillations.
引用
收藏
页码:2627 / 2642
页数:15
相关论文
共 50 条
  • [21] Analysis of Stochastic Phenomena in 2D Hindmarsh-Rose Neuron Model
    Bashkirtseva, I.
    Ryashko, L.
    Slepukhina, E.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16), 2016, 1773
  • [22] Complexity analysis and discrete fractional difference implementation of the Hindmarsh-Rose neuron system
    Al-Qurashi, Maysaa
    Asif, Qurat Ul Ain
    Chu, Yu-Ming
    Rashid, Saima
    Elagan, S. K.
    RESULTS IN PHYSICS, 2023, 51
  • [23] The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations
    Storace, Marco
    Linaro, Daniele
    de Lange, Enno
    CHAOS, 2008, 18 (03)
  • [24] Synchronization of boundary coupled Hindmarsh-Rose neuron network
    Phan, Chi
    You, Yuncheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [25] A digital implementation of 2D Hindmarsh–Rose neuron
    Moslem Heidarpur
    Arash Ahmadi
    Nabeeh Kandalaft
    Nonlinear Dynamics, 2017, 89 : 2259 - 2272
  • [26] Complex bifurcation analysis and synchronization optimal control for Hindmarsh-Rose neuron model under magnetic flow effect
    Wouapi, Marcel Kemayou
    Fotsin, Bertrand Hilaire
    Ngouonkadi, Elie Bertrand Megam
    Kemwoue, Florent Feudjio
    Njitacke, Zeric Tabekoueng
    COGNITIVE NEURODYNAMICS, 2021, 15 (02) : 315 - 347
  • [27] Complex bifurcation structures in the Hindmarsh-Rose neuron model
    Gonzalez-Miranda, J. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (09): : 3071 - 3083
  • [28] Application of discrete memristors in logistic map and Hindmarsh–Rose neuron
    Chunlai Li
    Yongyan Yang
    Xuanbing Yang
    Yingchun Lu
    The European Physical Journal Special Topics, 2022, 231 : 3209 - 3224
  • [29] Order and chaos in the stochastic Hindmarsh–Rose model of the neuron bursting
    Irina Bashkirtseva
    Lev Ryashko
    Evdokia Slepukhina
    Nonlinear Dynamics, 2015, 82 : 919 - 932
  • [30] Finding Periodic Orbits in the Hindmarsh-Rose Neuron Model
    Angeles Martinez, M.
    Barrio, Roberto
    Serrano, Sergio
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 301 - 308