In a projective plane \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathit{PG}(2,\mathbb{K})$\end{document} defined over an algebraically closed field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{K}$\end{document} of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples.
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Guo, Zheng-Chu
Shi, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
Shi, Lei
Lin, Shao-Bo
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Ctr Intelligent Decis Making & Machine Learning, Sch Management, Xian 710049, Peoples R China
Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China