3-Nets realizing a group in a projective plane

被引:0
|
作者
Gábor Korchmáros
Gábor P. Nagy
Nicola Pace
机构
[1] Università della Basilicata,Dipartimento di Matematica e Informatica
[2] Contrada Macchia Romana,Bolyai Institute
[3] University of Szeged,Inst. de Ciências Matemáticas e de Computação
[4] Universidade de São Paulo,undefined
[5] MTA-ELTE Geometric and Algebraic Combinatorics Research Group,undefined
来源
Journal of Algebraic Combinatorics | 2014年 / 39卷
关键词
3-Net; Dual 3-net; Projective plane; Embedding; Cubic curve;
D O I
暂无
中图分类号
学科分类号
摘要
In a projective plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{PG}(2,\mathbb{K})$\end{document} defined over an algebraically closed field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{K}$\end{document} of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples.
引用
收藏
页码:939 / 966
页数:27
相关论文
共 50 条