Translation and modulation invariant Hilbert spaces

被引:0
|
作者
Joachim Toft
Anupam Gumber
Ramesh Manna
P. K. Ratnakumar
机构
[1] Linnæus University,Department of Mathematics
[2] Indian Institute of Science,Department of Mathematics
[3] National Institute of Science Education and Research Bhubaneswar,School of Mathematical Sciences
[4] Harish-Chandra Research Institute (HBNI),undefined
来源
Monatshefte für Mathematik | 2021年 / 196卷
关键词
Modulation spaces; Feichtinger’s minimization principle; 46C15; 46C05; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H$$\end{document} be a Hilbert space of distributions on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{R}^{d}$$\end{document} which contains at least one non-zero element of the Feichtinger algebra S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} and is continuously embedded in D′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}'$$\end{document}. If H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H$$\end{document} is translation and modulation invariant, also in the sense of its norm, then we prove that H=L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H= L^2$$\end{document}, with the same norm apart from a multiplicative constant.
引用
收藏
页码:389 / 398
页数:9
相关论文
共 50 条
  • [21] Invariant Subspaces of Idempotents on Hilbert Spaces
    Bala, Neeru
    Ghosh, Nirupam
    Sarkar, Jaydeb
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (01)
  • [22] On a Metric on Translation Invariant Spaces
    Mortazavizadeh, M.
    Tousi, R. Raisi
    Gol, R. A. Kamyabi
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2019, 14 (02): : 61 - 67
  • [23] TRANSLATION INVARIANT KOTHE SPACES
    SILVERMAN, GB
    ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (03) : 412 - 425
  • [24] Sequence Space Representations for Translation-Modulation Invariant Function and Distribution Spaces
    Andreas Debrouwere
    Lenny Neyt
    Journal of Fourier Analysis and Applications, 2022, 28
  • [25] Sequence Space Representations for Translation-Modulation Invariant Function and Distribution Spaces
    Debrouwere, Andreas
    Neyt, Lenny
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [26] Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups
    Busovikov, V. M.
    Sakbaev, V. Zh.
    IZVESTIYA MATHEMATICS, 2020, 84 (04) : 694 - 721
  • [27] The Invariant Subspace Problem for Separable Hilbert Spaces
    Khalil, Roshdi
    Yousef, Abdelrahman
    Alshanti, Waseem Ghazi
    Hammad, Ma'mon Abu
    AXIOMS, 2024, 13 (09)
  • [28] MULTIDIMENSIONAL INVARIANT INTERPOLATION SYSTEMS IN HILBERT SPACES
    TIPPENHAUER, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (04): : T222 - +
  • [29] Nearly Invariant Subspaces for Operators in Hilbert Spaces
    Yuxia Liang
    Jonathan R. Partington
    Complex Analysis and Operator Theory, 2021, 15
  • [30] HILBERT TRANSFORM ON REARRANGEMENT-INVARIANT SPACES
    BOYD, DW
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 599 - &