Translation and modulation invariant Hilbert spaces

被引:0
|
作者
Joachim Toft
Anupam Gumber
Ramesh Manna
P. K. Ratnakumar
机构
[1] Linnæus University,Department of Mathematics
[2] Indian Institute of Science,Department of Mathematics
[3] National Institute of Science Education and Research Bhubaneswar,School of Mathematical Sciences
[4] Harish-Chandra Research Institute (HBNI),undefined
来源
关键词
Modulation spaces; Feichtinger’s minimization principle; 46C15; 46C05; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H$$\end{document} be a Hilbert space of distributions on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{R}^{d}$$\end{document} which contains at least one non-zero element of the Feichtinger algebra S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} and is continuously embedded in D′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}'$$\end{document}. If H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H$$\end{document} is translation and modulation invariant, also in the sense of its norm, then we prove that H=L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H= L^2$$\end{document}, with the same norm apart from a multiplicative constant.
引用
收藏
页码:389 / 398
页数:9
相关论文
共 50 条
  • [1] Translation and modulation invariant Hilbert spaces
    Toft, Joachim
    Gumber, Anupam
    Manna, Ramesh
    Ratnakumar, P. K.
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (02): : 389 - 398
  • [2] Translation–Modulation Invariant Banach Spaces of Ultradistributions
    Pavel Dimovski
    Stevan Pilipović
    Bojan Prangoski
    Jasson Vindas
    Journal of Fourier Analysis and Applications, 2019, 25 : 819 - 841
  • [3] Translation-invariant Operators in Reproducing Kernel Hilbert Spaces
    Herrera-Yanez, Crispin
    Maximenko, Egor A.
    Ramos-Vazquez, Gerardo
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (03)
  • [4] Translation invariant subspaces of weighted Hilbert spaces on the real line
    Pedersen, TV
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (03) : 1387 - 1406
  • [5] Translation-invariant Operators in Reproducing Kernel Hilbert Spaces
    Crispin Herrera-Yañez
    Egor A. Maximenko
    Gerardo Ramos-Vazquez
    Integral Equations and Operator Theory, 2022, 94
  • [6] A characterization of translation and modulation invariant Hilbert space of tempered distributions
    Bais, Shubham R.
    Mohan, Pinlodi
    Naidu, D. Venku
    ARCHIV DER MATHEMATIK, 2024, 122 (04) : 391 - 404
  • [7] A characterization of translation and modulation invariant Hilbert space of tempered distributions
    Shubham R. Bais
    Pinlodi Mohan
    D. Venku Naidu
    Archiv der Mathematik, 2024, 122 : 429 - 436
  • [8] Translation-Modulation Invariant Banach Spaces of Ultradistributions
    Dimovski, Pavel
    Pilipovic, Stevan
    Prangoski, Bojan
    Vindas, Jasson
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 819 - 841
  • [9] Convolutors of translation-modulation invariant Banach spaces of ultradistributions
    Neyt, Lenny
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [10] Sampling Expansions and Interpolation in Unitarily Translation Invariant Reproducing Kernel Hilbert Spaces
    Cornelis V.M. van der Mee
    M.Z. Nashed
    Sebastiano Seatzu
    Advances in Computational Mathematics, 2003, 19 : 355 - 372